Pectins are plant polysaccharides consumed as part of a diet containing fruits and vegetables. Inside the gastrointestinal tract, pectin cannot be metabolized by the mammalian cells but is fermented by the gut microbiota in the colon with the subsequent release of end products including short-chain fatty acids (SCFA). The prebiotic effects of pectin have been previously evaluated but reports are inconsistent, most likely due to differences in the pectin chemical structure which can vary by molecular weight (MW) and degree of esterification (DE). Here, the effects of two different MW lemon pectins with varying DEs on the gut microbiota of two donors were evaluated in vitro. The results demonstrated that low MW, high DE lemon pectin (LMW-HDE) altered community structure in a donor-dependent manner, whereas high MW, low DE lemon pectin (HMW-LDE) increased taxa within in both donors. LMW-HDE and HMW-LDE lemon pectins both increased total SCFAs (1.49- and 1.46-fold, respectively) and increased acetic acid by 1.64-fold. Additionally, LMW-HDE lemon pectin led to an average 1.41-fold increase in butanoic acid. Together, these data provide valuable information linking chemical structure of pectin to its effect on the gut microbiota structure and function, which is important to understanding its prebiotic potential.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9739951 | PMC |
http://dx.doi.org/10.3390/foods11233877 | DOI Listing |
Gut Microbes
December 2025
State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
Changes in the gut microbiota are associated with obesity and may influence weight loss. We are currently implementing a sustained multidisciplinary collaborative weight management (MCWM) approach to weight loss. We report significant improvements in participant health status after 6 months, along with alterations in the structure, interactions, and metabolic functions of the microbiota.
View Article and Find Full Text PDFGut Microbes
December 2025
Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China.
The anti-PD-1 mAb may be further considered along with PGD2 or active molecules that can promote PGD2 synthesis to enhance the anti-tumor immune response.
View Article and Find Full Text PDFPLoS Biol
January 2025
State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
The peritrophic matrix (PM) acts as a physical barrier that influences the vector competence of mosquitoes. We have previously shown that gut microbiota promotes PM formation in Anopheles stephensi, although the underlying mechanisms remain unclear. In this study, we identify that the cell wall components of gut commensal bacteria contribute to PM formation.
View Article and Find Full Text PDFHepatol Commun
November 2024
Paediatric Liver, GI and Nutrition Centre and Mowatlabs, King's College Hospital, London, UK.
Background: The Kasai portoenterostomy (KPE) aims to re-establish bile flow in biliary atresia (BA); however, BA remains the commonest indication for liver transplantation in pediatrics. Gut microbiota-host interplay is increasingly associated with outcomes in chronic liver disease. This study characterized fecal microbiota and fatty acid metabolites in BA.
View Article and Find Full Text PDFFish Physiol Biochem
January 2025
Key Laboratory for Animal Nutrition and Feed Science of Hubei Province, Wuhan Polytechnic University, Wuhan, 430000, China.
Hydroxycinnamic acid derivatives are a class of phenolic acid compounds, including sinapic acid, ferulic acid, and caffeic acid, which are widely found in plants. This experiment was conducted to study the effects of hydroxycinnamic acid derivatives (sinapic acid, ferulic acid, and caffeic acid) on the growth performance, muscle physical parameters, and intestinal morphology of tilapia. A total of 320 tilapia fingerlings (9.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!