Fruit quality attributes interrelate with their dielectric properties, but such interrelationships in sea buckthorn berries under differing freezing regimes remain uninvestigated. Sea buckthorn ( L., cv. Shenqiuhong) berries were frozen at different temperatures (-13, -30, -35 and -40 °C) and stored for different periods (15, 30, 45, 60, 75 and 90 d). Seven quality attributes and nine dielectric parameters were measured to evaluate the effect of different frozen storage regimes on those attributes and parameters. The results showed that shorter time and lower temperature contributed to the preservation of berries quality. The dielectric parameters values increased with decreasing temperature and with the increase of freezing duration. The quality prediction models were established by the principal component analysis of the dielectric properties at characteristic frequency. The results are expected to provide a way to evaluate quality of frozen sea buckthorn berries by dielectric properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9739572PMC
http://dx.doi.org/10.3390/foods11233825DOI Listing

Publication Analysis

Top Keywords

dielectric properties
16
sea buckthorn
16
quality attributes
12
buckthorn berries
12
attributes dielectric
8
berries differing
8
differing freezing
8
freezing regimes
8
dielectric parameters
8
quality
6

Similar Publications

In this paper, Gd-doped ZrO gate dielectric films and metal-oxide-semiconductor (MOS) capacitors structured as Al/ZrGdO /Si were prepared using an ultraviolet ozone (UVO)-assisted sol-gel method. The effects of heat treatment temperature on the microstructure, chemical bonding state, optical properties, surface morphology and electrical characteristics of the ZrGdO composite films and MOS capacitors were systematically investigated. The crystalline phase of the ZrGdO films appeared only at 600 °C, indicating that Gd doping effectively inhibits the crystallization of ZrO films.

View Article and Find Full Text PDF

The quantum-well-like two-dimensional lead-halide perovskites exhibit strongly confined excitons due to the quantum confinement and reduced dielectric screening effect, which feature intriguing excitonic effects. The ionic nature of the perovskite crystal and the "softness" of the lattice induce the complex lattice dynamics. There are still open questions about how the soft lattices decorate the nature of excitons in these hybrid materials.

View Article and Find Full Text PDF

Liquid-liquid phase transitions play a pivotal role in various scientific disciplines and technological applications, ranging from biology to materials science and geophysics. Understanding the behavior of materials undergoing these transitions provides valuable insights into complex systems and their dynamic properties. This review explores the implications of liquid-liquid phase transitions, particularly focusing on the transition between low-density liquid (LDL) and high-density liquid (HDL) phases.

View Article and Find Full Text PDF

Cellulose-based poly(ionic liquid)s: Correlations between degree of substitution and alkyl side chain length with conductive and morphological properties.

Int J Biol Macromol

January 2025

Department of Chemistry, Rutgers University, Camden, NJ, United States of America; Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States of America. Electronic address:

Ion transport in solid polymer electrolytes is crucial for applications like energy conversion and storage, as well as carbon dioxide capture. However, most of the materials studied in this area are petroleum-based. Natural materials (biopolymers) have the potential to act as alternatives to petroleum-based products and, when derived with ionic liquid (IL) functionalities, present a sustainable alternative for conductive materials by offering tunable morphological, thermal, and mechanical properties.

View Article and Find Full Text PDF

Mid-infrared thermal radiation has attracted attention due to its wide range of applications. Compared to the static process of thermal emission, if thermal radiation can be dynamically controlled, it would be more suitable for practical applications. Herein, we designed a controllable thermal emitter based on phase change materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!