Despite being associated with high-order neurocognitive functions, the frontal lobe plays an important role in core neurological functions, such as motor and language functions. The aim of this study was to present a neurosurgical perspective of the cortical and subcortical anatomy of the frontal lobe in terms of surgical treatment of intraaxial frontal lobe lesions. We also discuss the results of direct brain mapping when awake craniotomy is performed. Ten adult cerebral hemispheres were prepared for white matter dissection according to the Klingler technique. Intraaxial frontal lobe lesions are approached with a superior or lateral trajectory during awake conditions. The highly eloquent cortex within the frontal lobe is identified within the inferior frontal gyrus (IFG) and precentral gyrus. The trajectory of the approach is mainly related to the position of the lesion in relation to the arcuate fascicle/superior longitudinal fascicle complex and ventricular system. Knowledge of the cortical and subcortical anatomy and its function within the frontal lobe is essential for preoperative planning and predicting the risk of immediate and long-term postoperative deficits. This allows surgeons to properly set the extent of the resection and type of approach during preoperative planning.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9741612 | PMC |
http://dx.doi.org/10.1038/s41598-022-25375-z | DOI Listing |
Alzheimers Dement
December 2024
Imperial College London, London, United Kingdom; Division of Neurology, Department of Brain Sciences, Imperial College London, United Kingdom, London, London, United Kingdom.
Background: Liraglutide is a glucagon-like peptide-1 (GLP-1) analogue licensed for the treatment of type 2 diabetes mellitus (T2DM). Preclinical evidence in transgenic models of Alzheimer's disease suggests that liraglutide exerts neuroprotective effects by reducing amyloid oligomers, normalising synaptic plasticity and cerebral glucose uptake, and increasing the proliferation of neuronal progenitor cells.
Method: This is a multi-centre, randomised, double-blind, placebo-controlled, phase IIb trial of liraglutide in participants with mild to moderate Alzheimer's dementia, conducted at several centres in the UK.
Background: Progranulin (GRN) plays a critical role in familial frontotemporal dementia (fFTD), where GRN haploinsufficiency leads to reduction in PGRN levels in the brain, resulting in degeneration of neurons in the frontal lobe of brain responsible for personality, language, and behavior. FTD is the most common dementia in people under 60. Sortilin (Sort1), expressed by neurons, endocytoses, and delivers PGRN rapidly to lysosomes for degradation.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Medical University of South Carolina, Charleston, SC, USA.
Background: Repetitive transcranial magnetic stimulation enhances cognition in people with mild cognitive impairment (MCI). Whereas conventional treatment requires daily sessions for 4-6 weeks, accelerated intermittent theta burst stimulation (iTBS) shortens the treatment course to just 3 days, substantially improving feasibility of use in people with MCI. We conducted a Phase I safety and feasibility trial of iTBS in MCI, finding preliminary evidence of cognitive improvement.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
VA Boston Healthcare System, Jamaica Plain, MA, USA.
Background: Mixed dementia type - Alzheimer's Disease (AD), cerebral amyloid angiopathy (CAA), and vascular - is vastly recognized as a cause of dementia in older adults. Whereas CAA, primarily leptomeningeal, is a frequent complication in hereditary transthyretin cardiac amyloidosis (TTRCA), it is unusually reported in association with wild-type TTR, with or without polyneuropathy. The knowledge of mixed dementia and wild-type TTR association is even scarcer.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Georgia Institute of Technology, Atlanta, GA, USA.
Background: Chronic stress promotes life-long risk for neuropsychiatric decline by increasing neuroinflammation and disrupting synaptic health and plasticity. Our lab and others have recently demonstrated that non-invasive gamma sensory stimulation (flicker) modulates immune signaling, restores microglial function, and improves cognitive performance in mouse models of Alzheimer's disease (AD). However, no research to date has studied the effects of flicker in the context of stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!