Subsurface geological formations can be utilized to safely store large-scale (TWh) renewable energy in the form of green gases such as hydrogen. Successful implementation of this technology involves estimating feasible storage sites, including rigorous mechanical safety analyses. Geological formations are often highly heterogeneous and entail complex nonlinear inelastic rock deformation physics when utilized for cyclic energy storage. In this work, we present a novel scalable computational framework to analyse the impact of nonlinear deformation of porous reservoirs under cyclic loading. The proposed methodology includes three different time-dependent nonlinear constitutive models to appropriately describe the behavior of sandstone, shale rock and salt rock. These constitutive models are studied and benchmarked against both numerical and experimental results in the literature. An implicit time-integration scheme is developed to preserve the stability of the simulation. In order to ensure its scalability, the numerical strategy adopts a multiscale finite element formulation, in which coarse scale systems with locally-computed basis functions are constructed and solved. Further, the effect of heterogeneity on the results and estimation of deformation is analyzed. Lastly, the Bergermeer test case-an active Dutch natural gas storage field-is studied to investigate the influence of inelastic deformation on the uplift caused by cyclic injection and production of gas. The present study shows acceptable subsidence predictions in this field-scale test, once the properties of the finite element representative elementary volumes are tuned with the experimental data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9741639 | PMC |
http://dx.doi.org/10.1038/s41598-022-25715-z | DOI Listing |
Materials (Basel)
December 2024
Department of Materials Science and Technology, Tokyo University of Science, 6-3-1, Niijuku Katsushika-ku, Tokyo 125-8585, Japan.
Accurately predicting fatigue failure in CFRP laminates requires an understanding of the cyclic behavior of their resin matrix, which plays a crucial role in the materials' overall performance. This study focuses on the temperature elevation during the cyclic loadings of the resin, driven by inelastic deformations that increase the dissipated energy. At low loading frequencies, the dissipated energy is effectively released as heat, preventing significant temperature rise and maintaining a consistent, balanced thermal state.
View Article and Find Full Text PDFBMC Urol
January 2025
Urology Department HOGIP UCAD, Cheikh Anta Diop University, Dakar, Senegal.
Background: The inelasticity of dartos tissue and the regulation of collagen expression are significant factors in the pathophysiology of chordee associated with hypospadias. While the COL2A1:COL1A1 ratio is recognised as a measure of cell differentiation, there is yet to be a study specifically examining this ratio in hypospadias. The aim of this study was to determine the COL2A1:COL1A1 ratio.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Civil Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, 404100, China.
Compared with the traditional frame structures, the novel composite frame with replaceable steel links can realize the rapid recovery of building occupancy after seismic actions to provide the capacity of reducing structural damage and ensure the reuse of a structure. In this system, plastic deformation and damage mainly concentrated in the steel links serving as the structural fuses and other structural members still remained elastic or minor plastic, and then the damaged steel links can be easy for replace. In order to study the seismic performance of the replaceable steel links, a total of four test specimens with different short length ratios were designed.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
January 2025
Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai, 200444, PR China.
The Bouligand structure represents helicoidal stacking of aligned fibers; such a structure is widely observed in biological composites. Despite the progress in characterization of toughening caused by Bouligand arrangement of fibers, the inelastic deformation mechanisms of this structure remain elusive. In this study, we carry out calculations for plastic deformation of Bouligand structure, crossed-lamellar structure and the single lamellar structure.
View Article and Find Full Text PDFPhys Rev E
September 2024
Forschungszentrum Jülich GmbH, Jülich Center for Neutron Science at the Heinz Maier Leibnitz Zentrum, Lichtenbergstrasse 1, 85747 Garching, Germany.
A mathematical model is developed to jointly analyze elastic and inelastic scattering data of fluctuating membranes within a single theoretical framework. The model builds on a nonhomogeneously clipped time-dependent Gaussian random field. This specific approach provides one with general analytical expressions for the intermediate scattering function for any number of sublayers in the membrane and arbitrary contrasts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!