Unlocking the hidden chemical space in cubic-phase garnet solid electrolyte for efficient quasi-all-solid-state lithium batteries.

Nat Commun

Battery Material Lab, Material Research Center, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea.

Published: December 2022

Garnet-type LiLaZrO (LLZO) solid electrolytes (SE) demonstrates appealing ionic conductivity properties for all-solid-state lithium metal battery applications. However, LLZO (electro)chemical stability in contact with the lithium metal electrode is not satisfactory for developing practical batteries. To circumvent this issue, we report the preparation of various doped cubic-phase LLZO SEs without vacancy formation (i.e., Li = 7.0 such as LiLaZrHfScNbO and LiLaZrHfSnScTaO). The entropy-driven synthetic approach allows access to hidden chemical space in cubic-phase garnet and enables lower solid-state synthesis temperature as the cubic-phase nucleation decreases from 750 to 400 °C. We demonstrate that the SEs with Li = 7.0 show better reduction stability against lithium metal compared to SE with low lithium contents and identical atomic species (i.e., Li = 6.6 such as LiLaZrHfSnScTaO). Moreover, when a LiLaZrHfSnScTaO pellet is tested at 60 °C in coin cell configuration with a Li metal negative electrode, a LiNiCoMnO-based positive electrode and an ionic liquid-based electrolyte at the cathode|SE interface, discharge capacity retention of about 92% is delivered after 700 cycles at 0.8 mA/cm and 60 °C.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9741625PMC
http://dx.doi.org/10.1038/s41467-022-35287-1DOI Listing

Publication Analysis

Top Keywords

lithium metal
12
hidden chemical
8
chemical space
8
space cubic-phase
8
cubic-phase garnet
8
lithium
5
unlocking hidden
4
cubic-phase
4
garnet solid
4
solid electrolyte
4

Similar Publications

Cellulose-Based Materials and Their Application in Lithium-Sulfur Batteries.

Polymers (Basel)

January 2025

Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, Argentina.

Lithium-sulfur (Li-S) batteries are promising candidates for next-generation energy storage due to their high energy density, cost-effectiveness, and environmental friendliness. However, their commercialization is hindered by challenges, such as the polysulfide shuttle effect, lithium dendrite growth, and low electrical conductivity of sulfur cathodes. Cellulose, a natural, renewable, and versatile biopolymer, has emerged as a multifunctional material to address these issues.

View Article and Find Full Text PDF

Enhanced Interfacial Contact and Lithium-Ion Transport in Ionic Liquid Polymer Electrolyte via In-Situ Electrolyte-Cathode Integration.

Molecules

January 2025

Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.

Solid polymer electrolytes (SPEs) have attracted much attention due to their excellent flexibility, strong interfacial adhesion, and good processibility. However, the poor interfacial contact between the separate solid polymer electrolytes and electrodes leads to large interfacial impedance and, thus, hinders Li transport. In this work, an ionic liquid-modified comb-like crosslinked network composite solid-state electrolyte with an integrated electrolyte/cathode structure is prepared by in situ ultraviolet (UV) photopolymerization.

View Article and Find Full Text PDF

We proposed and investigated a refinement of technology for obtaining Mg-doped LiNbO (LN) crystals by co-doping it with B. LN:Mg (5.0 mol%) is now the most widely used material based on bulk lithium niobate.

View Article and Find Full Text PDF

Reactive astrogliosis and acidosis, common features of epileptogenic lesions, express a high level of astrocytic acid-sensing ion channel-1a (ASIC1a), a proton-gated cation channel and key mediator of responses to neuronal injury. This study investigates the role of astrocytic ASIC1a in cognitive impairment following epilepsy. Status epilepticus (SE) in C57/BL6 mice was induced using lithium-pilocarpine; the impact of ASIC1a on astrocytes was assessed using rAAV-ASIC1a-NC and rAAV-ASIC1a-shRNA, injected in the CA3 region of mice.

View Article and Find Full Text PDF

Supplying critical metals such as cobalt, lithium, and nickel, to achieve sustainable development goals will be one of the most important concerns in the coming decades. A significant challenge in this area is the separation of some similar elements, such as nickel and cobalt. This study proposes a novel and eco-friendly process to selectively recover cobalt from nickel and manganese.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!