A hydraulic soft microgripper for biological studies.

Sci Rep

Department of Electrical Engineering and Computer Science, Texas A&M University, College Station, TX, USA.

Published: December 2022

We have developed a microscale hydraulic soft gripper and demonstrated the handling of an insect without damage. This gripper is built on Polydimethylsiloxane (PDMS) with the soft material casting technique to form three finger-like columns, which are placed on a circular membrane. The fingers have a length of 1.5 mm and a diameter of 300 µm each; the distance between the two fingers is 600 µm of center-to-center distance. A membrane as a 150 µm soft film is built on top of a cylindrical hollow space. Applying pressure to the interior space can bend the membrane. Bending the membrane causes the motion of opening/closing of the gripper, and as a result, the three fingers can grip an object or release it. The PDMS was characterized, and the experimental results were used later in Abaqus software to simulate the gripping motion. The range of deformation of the gripper was investigated by simulation and experiment. The result of the simulation agrees with the experiments. The maximum 543 µN force was measured for this microfluidic-compatible microgripper and it could lift a ball that weighs 168.4 mg and has a 0.5 mm diameter. Using this microgripper, an ant was manipulated successfully without any damage. Results showed fabricated device has great a potential as micro/bio manipulator.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9741586PMC
http://dx.doi.org/10.1038/s41598-022-25713-1DOI Listing

Publication Analysis

Top Keywords

hydraulic soft
8
soft microgripper
4
microgripper biological
4
biological studies
4
studies developed
4
developed microscale
4
microscale hydraulic
4
gripper
4
soft gripper
4
gripper demonstrated
4

Similar Publications

Hydraulic structures are frequently subjected to soft-water or acidic environments, necessitating serious consideration of the long-term effects of calcium leaching on the durability of concrete structures. Three types of common Portland cement (ordinary Portland cement, moderate-heat cement, and low-heat cement) paste samples widely applied to hydraulic concrete were immersed in a 6 mol/L NHCl solution to simulate accelerated calcium leaching behavior. The mass loss, porosity, leaching depth, compressive strength, and Ca/Si ratio of the three types of pastes were measured at different immersion stages (0, 14, 28, 56, 91, 140, and 180 days).

View Article and Find Full Text PDF

The extraction of coal seams with high gas content and low permeability presents significant challenges, particularly due to the extended period required for gas extraction to meet safety standards and the inherently low extraction efficiency. Hydraulic fracturing technology, widely employed in the permeability enhancement of soft and low-permeability coal seams, serves as a key intervention. This study focuses on the high-rank raw coal from the No.

View Article and Find Full Text PDF

Development of a Self-Deploying Extra-Aortic Compression Device for Medium-Term Hemodynamic Stabilization: A Feasibility Study.

Adv Sci (Weinh)

December 2024

Graduate School of Biomedical Engineering, Faculty of Engineering, and Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, Kensington Campus, Sydney, NSW, 2052, Australia.

Hemodynamic stabilization is crucial in managing acute cardiac events, where compromised blood flow can lead to severe complications and increased mortality. Conditions like decompensated heart failure (HF) and cardiogenic shock require rapid and effective hemodynamic support. Current mechanical assistive devices, such as intra-aortic balloon pumps (IABP) and extracorporeal membrane oxygenation (ECMO), offer temporary stabilization but are limited to short-term use due to risks associated with prolonged blood contact.

View Article and Find Full Text PDF

A Novel Pneudraulic Actuation Method to Enhance Soft Robot Control.

Soft Robot

December 2024

Department of Surgical & Interventional Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London (KCL), London, UK.

Modern industrial and medical applications require soft actuators with practical actuation methods, capable of precision control and high-speed performance. Within the realm of medical robotics, precision and speed imply less complications and reduced operational times. Soft fluidic actuators (SFAs) are promising candidates to replace the current rigid endoscopes due to their mechanical compliance, which offers safer human-robot interaction.

View Article and Find Full Text PDF

Within this research, a one-stage hybrid dual internal circulation airlift A2O (DCAL-A2O) bioreactor was designed and operated to simultaneously remove carbon, nitrogen and phosphorous (CNP) from milk processing wastewater (MPW) in different operational circumstances. The substantial operating variables monitored in this work were including hydraulic retention time (HRT), airflow rate (AFR) and aeration volume ratio (AVR) ranged from 7 to 15 h, 1-3 L/min and 0.324-0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!