While sludge bulking often occurring in activated sludge processes generally leads to serious membrane fouling in membrane bioreactors (MBR), the underlying causes are still unclear. In this study, fouling behaviors of a MBR operated at stages of normal and sludge bulking were compared, and the fouling mechanisms of the different behaviors were explored. It was found that, the MBR could be stably operated in normal stage without membrane cleaning for about 60 days, whereas, daily membrane cleaning had to be carried out when operated in sludge bulking stage. The bulking sludge possessed a rather high specific filtration resistance (SFR) of about 1.36×10 m·kg, which is over 5.33 times than that of the normal sludge. A series of characterizations demonstrated that the bulking sludge had rather lower dewaterability, smaller particle size, higher fractal dimension, higher viscosity, abundant filamentous bacteria and different functional groups of extracellular polymer sustains (EPS). It was suggested that microbial community transition was responsible for the occurrence of sludge bulking, further affecting membrane fouling. Based on these characterizations, it was reported that adhesion propensity (indicated by the thermodynamic interaction) of the bulking sludge to the membrane surface is about 3.6 times than that of the normal sludge. It was proposed that, extra force should be provided to offset a chemical potential gap caused by foulant layer structure transition during sludge bulking in order to sustain filtration of the bulking sludge, resulting in extremely high SFR. This study offered deep thermodynamic mechanisms of MBR fouling during occurrence of sludge bulking.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2022.119456 | DOI Listing |
Bioresour Technol
January 2025
School of Resources and Environment, Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, China.
In aerobic granular sludge (AGS) system, N-acyl homoserine lactones (AHLs) can effectively regulate the community structure and control filamentous bulking. It would be economically feasible to make mature granules into AHLs-rich AGS extract (AE) to replace synthesized AHLs. In this study, two SBRs were run in a fully aerobic environment and a short cycle (4 h) to culture AGS: R1 with AE adding; R2 served as control.
View Article and Find Full Text PDFEnviron Res
January 2025
National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
Quorum quenching consortia (QQC) enriched by special substrates for bioaugmentation is a promising QQ technology to reduce biofouling, sludge yield, and sludge bulking. However, the effect of substrate type on the performance of QQC is still a research gap. This study selected three different substrates, regular AHLs (N-octanoyl-l-homoserine lactone, C8), 3-oxo-AHLs (3-oxo-octanoyl)-l-homoserine lactone, 3-oxo-C8), and AHLs analogs (γ-caprolactone, GCL) to enrich three QQC (C8-QQC, 3OC8-QQC, GCL-QQC).
View Article and Find Full Text PDFEnviron Res
January 2025
State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China. Electronic address:
Antibiotic resistance genes (ARGs) rebounding during composting cooling phase is a critical bottleneck in composting technology that increased ARGs dissemination and application risk of compost products. In this study, mature compost (MR) was used as a substitute for rice husk (RH) to mitigate the rebound of ARGs and mobile genetic elements (MGEs) during the cooling phase of sewage sludge composting, and the relationship among ARGs, MGEs, bacterial community and environmental factors was investigated to explore the key factor influencing ARGs rebound. The results showed that aadD, blaCTX-M02, ermF, ermB, tetX and vanHB significantly increased 4.
View Article and Find Full Text PDFWater Res
December 2024
National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
Resilience to increasing organic loading rates (OLRs) is the key to maintaining stable performance in treating industrial wastewater. First, this study compared the stability, particularly the nitrification performance, of two lab-scale moving bed biofilm reactors (MBBRs) filled with porous polyurethane biocarriers with two conventional activated sludge reactors (ASRs) in the treatment of synthetic coking wastewater under OLRs increasing from 0.3 kg to 1.
View Article and Find Full Text PDFHuan Jing Ke Xue
November 2024
Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!