Mucoadhesive thermogels were developed by crosslinking poly(n-isopropylacrylamide) based polymers with chitosan and incorporating disulfide bridges, capable of releasing cysteamine upon interaction with mucin, for the treatment of cystinosis. Through crosslinking with chitosan and incorporating varying concentrations of the disulfide monomer into the polymer backbone, the extent of how mucoadhesive the developed thermogels were could be controlled. Through disulfide bridging with mucin, the thermogels released 6 to 10 μg of the conjugate model 2-mercaptopyridine over five days. Utilizing chitosan as the crosslinker, the developed thermogels were shown to degrade to a statistically higher extent following incubation with lysozyme, the highest concentration tear enzyme, by gravimetric and rheologic analysis. The developed thermogels were extensively tested in vivo utilizing a rat model in which materials were applied directly to the corneal surface and a rabbit model in which thermogels were applied to the inferior fornix. With the developed models, there was no adverse reactions or visual discomfort incurred following application of the thermogels. It has been demonstrated that the thermogels produced can be applied to the inferior fornix and release the stable conjugated payload over several days. The developed thermogel was designed to improve upon the current clinical treatment options for ocular cystinosis which are acidic topical formulations that require reapplication multiple times a day.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioadv.2022.213235 | DOI Listing |
Soft Matter
January 2025
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
The impact of animal-based food production on climate change drives the development of plant-based alternatives. We demonstrate the use of colloidal thermogelation on a real nanoemulsion system to create structured gels that could be of interest for thermo-mechanical processing of next-generation plant-based food applications. We use a commercial pea protein isolate (PPI) without further purification to stabilize a 20 vol% peanut oil-in-water nanoemulsion at pH = 7 by high-pressure homogenization (HPH) and demonstrate the temperature induced gelation behavior of the nanoemulsion as a function of the HPH processing parameters.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore.
Injectable thermoresponsive hydrogels (thermogels), valued for their conformability and minimal invasiveness, are increasingly used as in situ forming implants for drug delivery and as regenerative scaffolds. These gels exhibit sol-to-gel phase transitions at body temperature. As localized depots and scaffolds, these gels determine the chemical and mechanical environments and could dramatically influence the release kinetics of drugs or the fate of cells.
View Article and Find Full Text PDFEur J Surg Oncol
October 2024
Université Paris Cité, UMR 1275: CAP Paris Tech, Paris, France; Hepato-Biliary-Pancreatic Gastrointestinal Surgery and Liver Transplantation, Pitié-Salpêtrière Hospital AP-HP, 75005, Paris, France. Electronic address:
Background: Surgeons may discover perioperative clinical situations associated with an increased risk of peritoneal carcinomatosis recurrence after primary resection. We developed a thermogel that can be used as a drug carrier to deliver an anticancer agent in the peritoneal cavity as a rescue solution. The spatial distribution of the thermogel and pharmacokinetics of chemotherapy have been studied in pigs.
View Article and Find Full Text PDFBr J Pharmacol
February 2025
Department of Neuroscience, Unit of Audiology, Università degli Studi di Napoli Federico II, Naples, Italy.
Background And Purpose: Cisplatin-induced sensorineural hearing loss is a significant clinical challenge. Although the potential effects of brain-derived neurotrophic factor (BDNF) have previously been investigated in some ototoxicity models, its efficacy in cisplatin-induced hearing loss remains uncertain. This study aimed to investigate the therapeutic potential of recombinant human BDNF (rhBDNF) in protecting cells against cisplatin-induced ototoxicity.
View Article and Find Full Text PDFMaterials (Basel)
September 2024
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland.
In this work, we present basic research on developing thermogel carriers containing high amounts of model antibody immunoglobulin G (IgG) with potential use as injectable molecules. The quantities of IgG loaded into the gel were varied to evaluate the possibility of tuning the dose release. The gel materials were based on blends of thermoresponsive and degradable ABA-type block copolymers composed of poly(lactide-co-glycolide)-b-poly(ethylene glycol)-b-poly(lactide-co-glycolide) (PLGA-PEG-PLGA) or poly(lactide-co-caprolactone)-b-poly(ethylene glycol)-b-(lactide-co-caprolactone) (PLCL-PEG-PLCL).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!