The olive oil microbiota mainly consists of yeasts, which may positively or negatively affect the physicochemical and sensory features of product. In this study, 17 yeast strains belonging to Candida boidinii, Lachancea fermentati, Nakazawaea molendinolei, N. wickerhamii and Schwanniomyces polymorphus species were collected during olive oil production, identified and tested for the ability to ferment sugars, to grow at low temperatures, for the occurrence of different enzymatic activities, for the tolerance and degradation of phenolic compounds, radical scavenging activities, biofilm formation, survival to simulated gastro-intestinal (GIT) tract. Yeasts were also inoculated in extra virgin olive oils (EVOO; from Leccino and Coratina cultivar) to evaluate their survival and their effect on EVOO quality (changes in analytical indices) during 6-months of storage. Most of strains were able to grow at 15°C, while the ability to ferment different sugars was strain-specific. All strains had β-glucosidase activity, while none exhibited lipolytic activity; peroxidase was widespread among the strains, while protease activity was strain-dependent. Esterase and the ability to hydrolyse oleuropein and form hydroxytyrosol was present only in N. wickerhamii strains. All strains were able to survive in olive mill wastewater, used as a model of phenolic compounds-rich matrix. A potential biofilm formation was observed only in N. wickerhamii, while the ability to scavenge radical and to cope with GIT-associated stresses were strain-dependent. High levels of survival were observed for almost strains (except S. polymorphus), in both Leccino and Coratina samples. Yeasts limited the acidity rise in olive oils, but overtime they contributed to increase the parameters related to oxidative phenomena (i.e. peroxides, K, K), resulting in a declassification of EVOOs. The total phenolic content (TPC) was correlated to the presence of yeasts and, at the end of storage period (6 months) inoculated samples had significantly lower concentrations compared to the control oils. This study confirms that yeasts are able to survive in olive oils and, therefore, the control of their occurrence during extraction process and storage conditions is needed to obtain high-quality products and to maintain the standards of EVOO classification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijfoodmicro.2022.110041 | DOI Listing |
Environ Res
January 2025
College of Ecology and Environment, Xinjiang University, Urumqi 830046, China.
The objective of this investigation is to overcome the difficulties in fabricating cost-effective, eco-friendly porous geopolymers (PGs) by integrating Coal fly ash (CFA) and spodumene flotation tailings (SFT). This synthesis utilizes a unique blend of CFA and SFT in a 6:4 mass ratio, with specific attention to optimizing the pore architecture to improve the PGs' efficacy. Key parameters included a modulus of 1.
View Article and Find Full Text PDFCrit Rev Food Sci Nutr
January 2025
Department of Pharmaceutical Botany, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.
The so-called Mediterranean diet, with olive oil as a key component, is effective in reducing cardiometabolic disease risk. Olive oil consumption improves blood pressure, insulin levels and resistance, supporting heart health and glycemic control. Its phenolic compounds, including oleuropein (OLE), hydroxytyrosol (HT), and tyrosol (TYR) are hypothesized to likely contribute to these benefits.
View Article and Find Full Text PDFJ Chromatogr A
January 2025
Analytical Chemistry Laboratory, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, Gembloux 5030, Belgium. Electronic address:
The analysis of mineral oil aromatic hydrocarbons (MOAH) in vegetable oils is currently associated with high uncertainty due to various factors ranging from sample preparation to data interpretation. One significant factor is the coelution of biogenic compounds of terpenic origin with the MOAH fraction during chromatographic analysis. The common purification method is epoxidation, a chemical reaction that changes the polarity of the interferences, allowing their separation from MOAH.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Republic of Türkiye, Ministry of Agriculture and Forestry, Hatay Olive Research Institute Directorate, General Directorate of Agricultural Research and Policies, Hassa Station, Hassa, Hatay, 31700, Türkiye.
Background: Pistachio (Pistacia vera L.) nuts are among the most popular nuts. The pistachio cultivars are tolerant to both drought and salinity, which is why they are extensively grown in the arid, saline, and hot regions of the Middle East, Mediterranean countries, and the United States.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Agricultural and Environmental Biotechnology, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil; Institute of Bioenergy Research (IPBEN), Jaboticabal, São Paulo, Brazil. Electronic address:
This study characterized a novel bacterial lipase with high biotechnological potential, focusing on industrial and environmental applications. Bacterial isolates were screened using olive oil as a substrate, and the strain with the highest hydrolytic halo was identified as Burkholderia sp. via 16S rRNA analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!