Background: Breast ultrasound (BUS) imaging is one of the most prevalent approaches for the detection of breast cancers. Tumor segmentation of BUS images can facilitate doctors in localizing tumors and is a necessary step for computer-aided diagnosis systems. While the majority of clinical BUS scans are normal ones without tumors, segmentation approaches such as U-Net often predict mass regions for these images. Such false-positive problem becomes serious if a fully automatic artificial intelligence system is used for routine screening.
Methods: In this study, we proposed a novel model which is more suitable for routine BUS screening. The model contains a classification branch that determines whether the image is normal or with tumors, and a segmentation branch that outlines tumors. Two branches share the same encoder network. We also built a new dataset that contains 1600 BUS images from 625 patients for training and a testing dataset with 130 images from 120 patients for testing. The dataset is the largest one with pixel-wise masks manually segmented by experienced radiologists. Our code is available at https://github.com/szhangNJU/BUS_segmentation.
Results: The area under the receiver operating characteristic curve (AUC) for classifying images into normal/abnormal categories was 0.991. The dice similarity coefficient (DSC) for segmentation of mass regions was 0.898, better than the state-of-the-art models. Testing on an external dataset gave a similar performance, demonstrating a good transferability of our model. Moreover, we simulated the use of the model in actual clinic practice by processing videos recorded during BUS scans; the model gave very low false-positive predictions on normal images without sacrificing sensitivities for images with tumors.
Conclusions: Our model achieved better segmentation performance than the state-of-the-art models and showed a good transferability on an external test set. The proposed deep learning architecture holds potential for use in fully automatic BUS health screening.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9859996 | PMC |
http://dx.doi.org/10.1002/acm2.13863 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!