Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A key role in the treatment of herpesviral infections is played by modified nucleosides and their predecessors - acyclovir, its L-valine ester (valaciclovir) and famciclovir (prodrug of penciclovir). The biological activity of compounds of this class is determined by their similarity to natural nucleosides. After phosphorylation by viral thymidine kinase and then cell enzymes to the triphosphate forms, acyclovir and penciclovir inhibit the activity of viral DNA polymerase and synthesis of viral DNA. The increasing role of herpesvirus infections in human infectious pathology, as well as the development of drug resistance in viruses, mainly in patients with immunodeficiencies of various origins, necessitate the search for new compounds possessing anti-herpesvirus activity, using as a biological target not DNA polymerase, but other viral proteins and enzymes, unique or different from cellular proteins, performing similar functions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.18821/0507-4088-2018-63-4-149-159 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!