Recombinant viral vectors represent one of the most promising platforms for creating a new generation of vaccines against tuberculosis. We constructed a vaccine candidate based on a cold-adapted influenza vector with a truncated NS1 protein containing an insert of tuberculosis ESAT-6 and Ag85A antigens. The recombinant virus possessed a cold-adapted and temperature-sensitive phenotype and was attenuated for mice when administered intranasally. Immunofluorescent staining and Western blot showed the expression of ESAT-6 protein in MDCK cells infected by recombinant virus. After intranasal administration to mice, the recombinant virus stimulated a specific anti-tuberculosis CD4 + Th1-type response with the formation of polyfunctional antigen-specific T cells.

Download full-text PDF

Source
http://dx.doi.org/10.18821/0507-4088-2017-62-6-266-272DOI Listing

Publication Analysis

Top Keywords

recombinant virus
12
influenza vector
8
recombinant
5
safety immunogenicity
4
immunogenicity cold-adapted
4
cold-adapted recombinant
4
recombinant influenza
4
vector expressing
4
expressing esat-6
4
esat-6 ag85А
4

Similar Publications

SARS-CoV-2 variants are mainly defined by mutations in their spike. It is therefore critical to understand how the evolutionary trajectories of spike affect virus phenotypes. So far, it has been challenging to comprehensively compare the many spikes that emerged during the pandemic in a single experimental platform.

View Article and Find Full Text PDF

Replicase components and the untranslated region of RNA2 synergistically regulate pathogenicity differentiation among different isolates of cucumber mosaic virus.

Int J Biol Macromol

January 2025

Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, PR China. Electronic address:

Changes in critical sites of virus-encoded protein or cis-acting element generally determine pathogenicity differentiation among different isolates of the same plant virus. Cucumber mosaic virus (CMV) isolates, which exhibit the most extensively known host range, demonstrate notable pathogenicity differentiation. This study focuses on the severe isolate CMV and mild isolate CMV, both affecting several species within the Solanaceae family, to identify the key factors regulating pathogenicity differentiation.

View Article and Find Full Text PDF

SARS-CoV-2 has continued spreading around the world in recent years since the initial outbreak in 2019, frequently developing into new variants with greater human infectious capacity. SARS-CoV-2 and its mutants use the angiotensin-converting enzyme 2 (ACE2) as a cellular entry receptor, which has triggered several therapeutic strategies against COVID-19 relying on the use of ACE2 recombinant proteins as decoy receptors. In this work, we propose an ACE2 silent Fc fusion protein (ACE2-hFcLALA) as a candidate therapy against COVID-19.

View Article and Find Full Text PDF

Genetic variability in snake venom and its implications for antivenom development in sub-Saharan Africa.

Trans R Soc Trop Med Hyg

January 2025

Pharm-Biotechnology and Traditional Medicine Centre (PHARMBIOTRAC), Faculty of Medicine, Mbarara University of Science and Technology, Mbarara 40006, Uganda.

Snake venom, a complex mixture of proteins, has attracted human attention for centuries due to its associated mortality, morbidity and other therapeutic properties. In sub-Saharan Africa (SSA), where snakebites pose a significant health risk, understanding the genetic variability of snake venoms is crucial for developing effective antivenoms. The wide geographic distribution of venomous snake species in SSA countries demonstrates the need to develop specific and broad antivenoms.

View Article and Find Full Text PDF

Recombinant dsAAV9-mediated Endogenous Overexpression of Macrophage Migration Inhibitory Factor Alleviates Myocardial Ischemia-Reperfusion Injury via Activating AMPK and ERK1/2 Signaling Pathways.

Cardiovasc Drugs Ther

January 2025

State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute, Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, China.

Purpose: To investigate the protective effect and mechanism of enhanced expression of endogenous macrophage migration inhibitory factor (MIF) on cardiac ischemia-reperfusion (I/R) injury.

Methods: A recombinant double-stranded adeno-associated virus serotype 9 with MIF or green fluorescent protein (GFP) genes (dsAAV9-MIF/GFP) was transduced into mice and neonatal rat ventricular myocytes (NRVMs). The models of cardiac 60 min ischemia and 24 h reperfusion and 12 h hypoxia/12 h reoxygenation (H/R) were established in mice and NRVMs, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!