A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Relationship between geriatric nutritional risk index and osteoporosis in type 2 diabetes in Northern China. | LitMetric

Background: Osteoporosis is a very common bone disease in the elderly population and can lead to fractures and disability. Malnutrition can lead to osteoporosis. The geriatric nutritional risk index (GNRI) is a tool used to assess the risk of malnutrition and complications associated with nutritional status in older patients and is a crucial predictor of many diseases. Hence, this study investigated the association between the GNRI and the presence of osteoporosis and assessed the value of this index for predicting osteoporosis in patients with type 2 diabetes mellitus (T2DM).

Methods: This cross-sectional study enrolled 610 elderly patients with T2DM. General and laboratory data of the patients were collected, along with their measurements of bone mineral density (BMD). The GNRI was calculated based on ideal body weight and serum albumin (ABL) levels. Correlation analysis was performed to determine the relationship between the GNRI and BMD and bone metabolism indices. The GNRI predictive value for osteoporosis development was analyzed through logistic regression analysis and by creating a receiver operating characteristic curve (ROC), calculating the area under the curve (AUC).

Results: All patients were divided into the no-nutritional risk and nutritional risk groups. Compared with the no-nutritional risk group, the nutritional risk group had a longer diabetes course, older age, higher HbA1c levels, higher prevalence of osteoporosis; lower BMI, ABL,triglyceride (TG),Calcium (Ca),25-hydroxy-vitamin-D(25(OH)D),and parathyroid hormone(PTH) and lower femoral neck BMD,total hip BMD (P < 0.05). All patients were also assigned to the non-osteoporosis and osteoporosis groups. The non-osteoporosis group had higher GNRI values than the osteoporosis group (P < 0.05). Correlation analysis revealed a positive correlation between the GNRI and lumbar BMD, femoral neck BMD, and total hip BMD (P < 0.05). After the adjustment for confounding factors, Spearman's correlation analysis revealed that the GNRI was positively correlated with Ca, 25(OH)D, and PTH and negatively correlated with alkaline phosphatase (ALP) and procollagen of type-1 N-propeptide (P1NP). Regression analysis exhibited that the GNRI was significantly associated with osteoporosis. The ROC curve analysis was performed using the GNRI as the test variable and the presence of osteoporosis as the status variable. This analysis yielded an AUC for the GNRI of 0.695 and was statistically significant (P < 0.05).

Conclusions: A lower GNRI among T2DM patients in northern China is associated with a higher prevalence of osteoporosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9733244PMC
http://dx.doi.org/10.1186/s12902-022-01215-zDOI Listing

Publication Analysis

Top Keywords

nutritional risk
16
geriatric nutritional
8
type diabetes
8
no-nutritional risk
8
risk group
8
risk
7
osteoporosis
7
nutritional
5
gnri
5
patients
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!