Glioblastomas are the most malignant brain tumors, whose progress was promoted by aberrate aerobic glycolysis. The immune environment was highly engaged in glioblastoma formation, while its interaction with aerobic glycolysis remained unclear. Herein, we build a 7-gene Glycolytic Score (GS) by Elastic Net in the training set and two independent validating sets. The GS predicted malignant features and poor survival with good performances. Immune functional analyses and Cibersort calculation identified depressed T cells, B cells, natural killer cells immunity, and high immunosuppressive cell infiltration in the high-GS group. Also, high expressions of the immune-escape genes were discovered. Subsequently, the single-cell analyses validated the glycolysis-related immunosuppression. The functional results manifested the high-GS neoplastic cells' association with T cells, NK cells, and macrophage function regulation. The intercellular cross-talk showed strong associations between high-GS neoplastic cells and M2 macrophages/microglia in several immunological pathways. We finally confirmed that ENO1, the key gene of the GS, promoted M2 microglia polarization and glioblastoma cell malignant behaviors via immunofluorescence, clone formation, CCK8, and transwell rescue experiments. These results indicated the interactions between cancerous glycolysis and immunosuppression and glycolysis' role in promoting glioblastoma progression. Conclusively, we built a robust model and discovered strong interaction between GS and immune, shedding light on prognosis management improvement and therapeutic strategies development for glioblastoma patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10014583PMC
http://dx.doi.org/10.1038/s41417-022-00569-9DOI Listing

Publication Analysis

Top Keywords

microglia polarization
8
aerobic glycolysis
8
cells cells
8
high-gs neoplastic
8
cells
6
glioblastoma
5
glioblastoma glycolytic
4
glycolytic signature
4
signature predicts
4
predicts unfavorable
4

Similar Publications

Microglial polarization and ferroptosis are important pathological features in Alzheimer's disease (AD). Ghrelin, a brain-gut hormone, has potential neuroprotective effects in AD. This study aimed to explore the potential mechanisms by which ghrelin regulates the progression of AD, as well as the crosstalk between microglial polarization and ferroptosis.

View Article and Find Full Text PDF

Spinal cord injury (SCI) is a chronic condition whereby persistent aberrant macrophage activation hinders the repair process. During acute trauma, dominant M1 macrophages produce high levels of reactive oxygen species (ROS), leading to increased apoptosis in neurons, glial cells, and oligodendrocytes. This study investigated the specific effects of a ROS-responsive hydrogel loaded with Apelin-13 (Apelin-13@ROS-hydrogel) on macrophage polarization and neuroinflammation, thereby exploring its role in boosting SCI repair.

View Article and Find Full Text PDF

Background: Neuroinflammation is one of the essential pathogeneses of cognitive damage suffering from sepsis-associated encephalopathy (SAE). Lots of evidences showed the microglia presented mitochondrial fragmentation during SAE. This study investigated the protective effects and novel mechanisms of inhibiting microglia mitochondrial fragmentation via mitochondrial division inhibitor 1 (Mdivi-1) on cognitive damage in SAE.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD), the leading cause of dementia, is characterized by cognitive decline and the accumulation of amyloid-β (Aβ). It affects millions, with numbers expected to double by 2050. SMOC2, implicated in inflammation and fibrosis, may play a role in AD pathogenesis, particularly in microglial cell function, offering a potential therapeutic target.

View Article and Find Full Text PDF

Inflammation aggravates secondary damage following spinal cord injury (SCI). M1 microglia induce inflammation and exert neurotoxic effects, whereas M2 microglia exert anti-inflammatory and neuroprotective effects. The sine oculis homeobox (SIX) gene family consists of six members, including sine oculis homeobox homolog 1 (SIX1)-SIX6.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!