The El Niño Southern Oscillation (ENSO) is the strongest source of interannual global climate variability, and extreme ENSO events are projected to increase in frequency under climate change. Interannual variability in the Coral Sea circulation has been associated with ENSO, although uncertainty remains regarding ENSO's influence on hydrodynamics and larval dispersal in the adjacent Great Barrier Reef (GBR). We investigated larval connectivity during ENSO events from 2010 to 2017 throughout the GBR, based on biophysical modelling of a widespread predatory reef fish, Lutjanus carponotatus. Our results indicate a well-connected system over the study period with high interannual variability in inter-reef connectivity associated with ENSO. Larval connectivity patterns were highly correlated to variations in the Southern Oscillation Index (SOI). During El Niño conditions and periods of weak SOI, larval dispersal patterns were predominantly poleward in the central and southern regions, reversing to a predominant equatorward flow during very strong SOI and extreme La Niña conditions. These ENSO-linked connectivity patterns were associated with positive connectivity anomalies among reefs. Our findings identify ENSO as an important source of variation in larval dispersal and connectivity patterns in the GBR, which can influence the stability of population dynamics and patterns of biodiversity in the region.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9734173 | PMC |
http://dx.doi.org/10.1038/s41598-022-25629-w | DOI Listing |
Nat Commun
January 2025
School of Atmospheric Sciences, Sun Yat-Sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
The boreal summer circumglobal teleconnection (CGT) provides a primary predictability source for mid-latitude Northern Hemisphere climate anomalies and extreme events. Here, we show that the CGT's circulation structure has been displaced westward by half a wavelength since the late 1970s, more severely impacting heatwaves and droughts over East Europe, East Asia, and southwestern North America. We present empirical and modelling evidence of the essential role of El Niño-Southern Oscillation (ENSO) in shaping this change.
View Article and Find Full Text PDFUnderstanding the relative contributions of environmental, behavioural and social factors to reproductive success is crucial for predicting population dynamics of seabirds. However, these factors are often studied in isolation, limiting our ability to evaluate their combined influence. This study investigates how marine environmental variables, foraging behaviour and social factors (divorce), influence reproductive success in little penguins () over 13 breeding seasons.
View Article and Find Full Text PDFMethodsX
June 2025
Department of Royal Rainmaking and Agricultural Aviation, Bangkok 10900, Thailand.
Rainfall prediction is a crucial aspect of climate science, particularly in monsoon-influenced regions where accurate forecasts are essential. This study evaluates rainfall prediction models in the Eastern Thailand by examining an optimal lag time associated with the Oceanic Niño Index (ONI). Five deep learning models-RNN with ReLU, LSTM, GRU (single-layer), LSTM+LSTM, and LSTM+GRU (multi-layer)-were compared using mean absolute error (MAE) and root mean square error (RMSE).
View Article and Find Full Text PDFSci Rep
January 2025
College of Ocean and Meteorology & South China Sea Institute of Marine Meteorology, Guangdong Ocean University, 524088, Zhanjiang, Guangdong, China.
Accurate classification of tropical cyclone (TC) tracks is essential for evaluating and mitigating the potential disaster risks associated with TCs. In this study, three commonly used methods (K-means, Fuzzy C-Means, and Self-Organizing Maps) are assessed for clustering historical TC tracks that originated in the South China Sea from 1949 to 2023. The results show that the K-means method performs the best, while the Fuzzy C-Means and Self-Organizing Maps methods are also viable alternatives.
View Article and Find Full Text PDFSci Total Environ
January 2025
Instituto Geológico y Minero de España (CSIC), Ríos Rosas 23, ES-28003 Madrid, Spain. Electronic address:
Mountain lakes are particularly fragile ecosystems undergoing important ecological and depositional transformations associated with ongoing global change. However, the history of anthropogenic impacts on mountain lakes and their catchments is much longer, in many cases featuring millennia of summer pastoral farming. More recently, the growing demand for raw materials and energy linked to industrialization, particularly accelerated since the 19th century CE, meant a further increase in human impact on mountain areas.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!