All biological functions evolve by fixing beneficial mutations and removing deleterious ones. Therefore, continuously fixing and removing the same essential function to separately diverge monophyletic gene families sounds improbable. Yet, here we report that brassinosteroid insensitive1 kinase inhibitor1 (BKI1)/membrane-associated kinase regulators (MAKRs) regulating a diverse function evolved into BKI1 and MAKR families from a common ancestor by respectively enhancing and losing ability to bind brassinosteroid receptor brassinosteroid insensitive1 (BRI1). The BKI1 family includes BKI1, MAKR1/BKI1-like (BKL) 1, and BKL2, while the MAKR family contains MAKR2-6. Seedless plants contain only BKL2. In seed plants, MAKR1/BKL1 and MAKR3, duplicates of BKL2, gained and lost the ability to bind BRI1, respectively. In angiosperms, BKL2 lost the ability to bind BRI1 to generate MAKR2, while BKI1 and MAKR6 were duplicates of MAKR1/BKL1 and MAKR3, respectively. In dicots, MAKR4 and MAKR5 were duplicates of MAKR3 and MAKR2, respectively. Importantly, BKI1 localized in the plasma membrane, but BKL2 localized to the nuclei while MAKR1/BKL1 localized throughout the whole cell. Importantly, BKI1 strongly and MAKR1/BKL1 weakly inhibited plant growth, but BKL2 and the MAKR family did not inhibit plant growth. Functional study of the chimeras of their N- and C-termini showed that only the BKI1 family was partially reconstructable, supporting stepwise evolution by a seesaw mechanism between their C- and N-termini to alternately gain an ability to bind and inhibit BRI1, respectively. Nevertheless, the C-terminal BRI1-interacting motif best defines the divergence of BKI1/MAKRs. Therefore, BKI1 and MAKR families evolved by gradually gaining and losing the same function, respectively, extremizing divergent evolution and adding insights into gene (BKI1/MAKR) duplication and divergence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9922406PMC
http://dx.doi.org/10.1093/plphys/kiac568DOI Listing

Publication Analysis

Top Keywords

ability bind
20
kinase regulators
8
brassinosteroid insensitive1
8
bki1
8
bki1 makr
8
makr families
8
bki1 family
8
bkl2 makr
8
makr family
8
makr1/bkl1 makr3
8

Similar Publications

It has been well accumulated that G-quadruplex (G4-DNA) has great anticancer relevance, and various heterocyclic moieties have been synthesized and examined as potent G4-DNA binders with promising anticancer activity. Here, we have synthesized a series of naphthalimide-triazole-coumarin conjugates by substituting various amines and further examine their anticancer activity against 60 human cancer cell lines at 10 μM. One and five dose concentration results reveal low values of MG-MID GI for compounds including (3.

View Article and Find Full Text PDF

Introduction: Porcine reproductive and respiratory syndrome virus (PRRSV) is a major pathogen that has caused severe economic losses in the swine industry. Screening key host immune-related genetic factors in the porcine alveolar macrophages (PAMs) is critical to improve the anti-virial ability in pigs.

Methods: In this study, an model was set to evaluate the anti-PRRSV effect of tylvalosin tartrates.

View Article and Find Full Text PDF

The drug discovery process can be significantly accelerated by using deep learning methods to suggest molecules with druglike features and, more importantly, that are good candidates to bind specific proteins of interest. We present a novel deep learning generative model, Prot2Drug, that learns to generate ligands binding specific targets leveraging (i) the information carried by a pretrained protein language model and (ii) the ability of transformers to capitalize the knowledge gathered from thousands of protein-ligand interactions. The embedding unveils the receipt to follow for designing molecules binding a given protein, and Prot2Drug translates such instructions by using the syntax of the molecular language generating novel compounds which are predicted to have favorable physicochemical properties and high affinity toward specific targets.

View Article and Find Full Text PDF

Monocytes serve as Shiga toxin carriers during the development of hemolytic uremic syndrome.

Cell Mol Biol Lett

January 2025

State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Drum Tower Hospital, Nanjing University Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.

Shiga toxin (Stx)-induced hemolytic uremic syndrome (HUS) poses a life-threatening complication for which a definitive treatment remains elusive. To exert its cytotoxic effect on renal cells, Stx must be delivered from the infected intestines to the kidney. However, the mechanism underlying Stx delivery remains unclear.

View Article and Find Full Text PDF

Phosphorylation-dependent WRN-RPA interaction promotes recovery of stalled forks at secondary DNA structure.

Nat Commun

January 2025

Mechanisms, Biomarkers and Models Section - Genome Stability Group, Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena, 299 - 00161, Rome, Italy.

The WRN protein is vital for managing perturbed replication forks. Replication Protein A strongly enhances WRN helicase activity in specific in vitro assays. However, the in vivo significance of RPA binding to WRN has largely remained unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!