Here we describe the design and the characterization of novel electrode materials consisting of multi-walled carbon nanotubes coated with glyconanoparticles (GNPs) functionalized with anthraquinone sulfonate. The resulting modified electrodes were characterized by scanning electron microscopy and cyclic voltammetry. Their electrochemical behavior reveals a stable pH-dependent redox signal characteristic of anthraquinone sulfonate. Immobilization of bilirubin oxidase on these three-dimensional electrodes leads to the electroenzymatic reduction of O to water with an onset potential of 0.5 V/SCE (saturated calomel electrode). A catalytic cathodic current of 174 µA (0.88 mA cm) at 0.1 V/SCE, demonstrates that glyconanoparticles modified by anthraquinone sulfonate were able to interact and orientate bilirubin oxidase by electrostatic interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioelechem.2022.108328 | DOI Listing |
Langmuir
January 2025
Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
Various methods exist for exploring different aspects of these mechanisms. However, techniques for investigating structural differences between the reduced and oxidized forms of an enzyme are limited. Here, we propose electrochemical small-angle X-ray scattering (EC-SAXS) as a novel method for potential-dependent structural analysis of redox enzymes and redox-active proteins.
View Article and Find Full Text PDFRSC Adv
January 2025
Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University Changsha 410081 China
Herein, we discuss the idea that fluorescent materials/molecules should logically show potential photoelectrochemistry (PEC) activity, and, in particular, the PEC of fluorescent small molecules (previously usually acting only as dye sensitizers for conventional semiconductors) is explored. After examining the PEC activities of some typical inorganic or organic fluorescent materials/molecules and by adopting methyl violet (MV) with the highest PEC activity among the examined fluorescent small molecules, a new and efficient (MV/Au nanoparticles (AuNPs))/fluorine-doped tin oxide (FTO) photoanode without conventional semiconductor(s) is prepared by layer-by-layer alternating the electrodeposition of AuNPs and the adsorption of MV. A bilirubin oxidase (BOD)/CuCoO/FTO bio-photocathode is prepared by electrodeposition, calcination and cast-coating.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China.
Enzymatic fuel cells (EFCs) are emerging as promising technologies in renewable energy and biomedical applications, utilizing enzyme catalysts to convert the chemical energy of renewable biomass into electrical energy, known for their high energy conversion efficiency and excellent biocompatibility. Currently, EFCs face challenges of poor stability and catalytic efficiency at the cathodes, necessitating solutions to enhance the oriented immobilization of multicopper oxidases for improved heterogeneous electron transfer efficiency. This study successfully identified a surface-binding peptide (SBP, 13 amino acids) derived from a methionine-rich fragment (MetRich, 53 amino acids) in CueO through semirational design.
View Article and Find Full Text PDFNanoscale
December 2024
School of Physics, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.
Oxygen scavenging systems (OSSs) are critical for dye stability in single-molecule fluorescence (SMF) experiments. However, the commonly used protocatechuic acid (PCA)/protocatechuate-3,4-dioxygenase (PCD) OSS alters DNA mechanical properties, limiting its applicability. To address this limitation, we examine the bilirubin oxidase (BOD) OSS, which had not been previously used in single-molecule experiments, alongside the pyranose oxidase and catalase (POC) OSS.
View Article and Find Full Text PDFChemistry
November 2024
Univ. Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 33607, Pessac, France.
Biofuel cells have become an interesting alternative for the design of sustainable energy conversion systems with multiple applications ranging from biosensing and bioelectronics to autonomously moving devices. However, as an electrochemical system, their performance is intimately related to mass transport conditions. In this work, the magnetohydrodynamic (MHD) effect is studied as an easy and straightforward alternative to enhance the performance of a biofuel cell based on the enzymes glucose oxidase (GOx) and bilirubin oxidase (BOD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!