Recently, hydroxylamine (HAm) was introduced to drive advanced oxidation processes (AOPs) for removing organic contaminants. However, we found that HAm-driven Cu(II)/peroxymonosulfate oxidation of phenol produced p-nitrosophenol, 2-nitrophenol and 4-nitrophenol. The total nitro(so) products accounted for approximately 25.0 % of the phenol transformation at certain condition. SO and •OH were identified as the primary and second significant oxidants, respectively. Reactive nitrogen species (RNS) were involved in phenol transformation. The pathway and mechanism of HAm transformation in HAm-driven transition metal ion-catalyzed AOPs were proposed for the first time in this study. The product of HAm via twice single-electron oxidation by Cu(II) is nitroxyl (HNO/NO), which is a critical oxidation intermediate of HAm. Further oxidation of HNO by SO or •OH is the initial step in propagating radical chain reactions, leading to nitric oxide radical (•NO) and nitrogen dioxide radical (•NO) as the primary RNS. HAm is a critical intermediate in natural nitrogen cycle, suggesting that HAm can drive the oxidation processes of pollutants in natural environments. Nitro(so) products will be readily produced when AOPs are applied for ecological remediation. This study highlights the formation of toxic nitrosated and nitrated products in HAm-driven AOPs, and the requirement of risk assessments to evaluate the possible health and ecological impacts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2022.130537 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!