The traditional production of wort with adjunct-introduced was achieved by double mashing procedure, which hindered the utilization of proteins in adjunct and led to a deficiency of nitrogen in wort. In this study, the modification mechanism of the extrusion pretreatment on the structure characterization of rice flour protein was investigated. The decoction mashing procedure was performed to enhance the nitrogen conversion of the extruded rice adjunct. Decreased solubility along with disrupted secondary and tertiary structures of rice protein were observed after extrusion. As a result, the total nitrogen, free amino nitrogen, and free amino acids content of wort with extruded rice adjunct-introduced were improved by 23.28 %, 34.67 %, and 7.33 %, respectively, which could be verified by the electrophoretic patterns of the wort protein. The application of extrusion as a pretreatment of adjuncts can promote the protein availability of adjuncts in the decoction mashing stage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2022.135150 | DOI Listing |
Eur J Pharmacol
December 2024
National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
Despite osteoarthritis (OA) being recognised for over a century as a debilitating disease that affects millions, there are huge gaps in our understanding of the underlying pathophysiology that drives this disease. Present day studies that focussed on ubiquitination (Ub) and ubiquitylation-like (Ubl) modification related mechanisms have brought light into the possibility of attenuating OA development by targeting these specific proteins in chondrocytes. In the present review, we discuss recent advances in studies involving Ub ligases and deubiquitinating enzymes (DUBs) which are of importance in the development of OA, and may offer potential therapeutic strategies for OA.
View Article and Find Full Text PDFJ Adv Res
December 2024
The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, PR China; Institute of Psychiatry and Neuroscience of Xinxiang Medical University, Xinxiang, Henan, PR China; Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, PR China. Electronic address:
Background: Liver pathologies represent a spectrum of conditions ranging from fatty liver to the aggressive hepatocellular carcinoma (HCC), as well as parasitic infections, which collectively pose substantial global health challenges. S-palmitoylation (commonly referred to as palmitoylation), a post-translational modification (PTM) characterized by the covalent linkage of a 16-carbon palmitic acid (PA) chain to specific cysteine residues on target proteins, plays a pivotal role in diverse cellular functions and is intimately associated with the liver's physiological and pathological states.
Aim Of Review: This study aims to elucidate how protein palmitoylation affects liver disease pathophysiology and evaluates its potential as a target for diagnostic and therapeutic interventions.
Environ Pollut
December 2024
Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China. Electronic address:
Phthalate esters (PAEs) are broadly utilized as plasticizers in industrial products, posing a significant threat to ecological security and human health. Lipase is a kind of green biocatalyst with the ability to degrade PAEs, but its application is limited due to its low stability and poor reusability. Herein, lipase from Candida rugosa (CRL) was immobilized into an organic ligand replacement MOFs (MAF-507) and cysteine modification and glutaraldehyde cross-linking were simultaneously performed to synthesize immobilized lipase (Cys-CRL@GA@MAF-507) using a one-pot method.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania; Advanced Polymer Materials Group, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania; ebio-Hub Research Centre, University Politehnica of Bucharest-Campus, Iuliu Maniu 6, 061344 Bucharest, Romania. Electronic address:
Multiple myeloma (MM), a hematological malignancy which affects the monoclonal plasma cells in the bone marrow, is in rising incidence around the world, accounting for approximately 2 % of newly diagnosed cancer cases in the US, Australia, and Western Europe. Despite the progress made in the last few years in the available therapeutic options (e.g.
View Article and Find Full Text PDFJ Biol Chem
December 2024
National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA. Electronic address:
Spatial organization of chromatin is essential for cellular functioning. However, the precise mechanisms governing sequence-dependent positioning of nucleosomes on DNA still remain unknown in detail. Existing algorithms, taking into account the sequence-dependent deformability of DNA and its interactions with the histone globular domains, predict rotational setting of only 65% of human nucleosomes mapped in vivo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!