A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Perpendicular Subcritical Shock Structure in a Collisional Plasma Experiment. | LitMetric

AI Article Synopsis

  • The study investigates perpendicular subcritical shocks created in a laboratory plasma environment using obstacles in a supermagnetosonic outflow from a z pinch setup.
  • It confirms the presence of these shocks and notes the formation of secondary shocks downstream, with measurements revealing no significant hydrodynamic jump in shock structure.
  • Additionally, the research finds minimal heating across the shock and demonstrates that the classical resistive diffusion length is roughly equal to the width of the shock, indicating low viscous dissipation.

Article Abstract

We present a study of perpendicular subcritical shocks in a collisional laboratory plasma. Shocks are produced by placing obstacles into the supermagnetosonic outflow from an inverse wire array z pinch. We demonstrate the existence of subcritical shocks in this regime and find that secondary shocks form in the downstream. Detailed measurements of the subcritical shock structure confirm the absence of a hydrodynamic jump. We calculate the classical (Spitzer) resistive diffusion length and show that it is approximately equal to the shock width. We measure little heating across the shock (<10% of the ion kinetic energy) which is consistent with an absence of viscous dissipation.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.129.225001DOI Listing

Publication Analysis

Top Keywords

perpendicular subcritical
8
subcritical shock
8
shock structure
8
subcritical shocks
8
shock
4
structure collisional
4
collisional plasma
4
plasma experiment
4
experiment study
4
study perpendicular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!