AI Article Synopsis

  • Myelodysplastic neoplasms (MDS) and chronic myelomonocytic leukemia (CMML) are diseases caused by mutations in blood stem cells that affect blood production.
  • Hypomethylating agents (HMAs) can help manage these conditions without needing to eliminate all mutated cells, possibly improving the function of the remaining stem cells.
  • The study analyzed the mutations in different blood cell types before and after treatment to understand how these mutated stem cells behave and contribute to better blood counts following HMA therapy.

Article Abstract

Myelodysplastic neoplasms (MDSs) and chronic myelomonocytic leukemia (CMML) are clonal disorders driven by progressively acquired somatic mutations in hematopoietic stem cells (HSCs). Hypomethylating agents (HMAs) can modify the clinical course of MDS and CMML. Clinical improvement does not require eradication of mutated cells and may be related to improved differentiation capacity of mutated HSCs. However, in patients with established disease it is unclear whether (1) HSCs with multiple mutations progress through differentiation with comparable frequency to their less mutated counterparts or (2) improvements in peripheral blood counts following HMA therapy are driven by residual wild-type HSCs or by clones with particular combinations of mutations. To address these questions, the somatic mutations of individual stem cells, progenitors (common myeloid progenitors, granulocyte monocyte progenitors, and megakaryocyte erythroid progenitors), and matched circulating hematopoietic cells (monocytes, neutrophils, and naïve B cells) in MDS and CMML were characterized via high-throughput single-cell genotyping, followed by bulk analysis in immature and mature cells before and after AZA treatment. The mutational burden was similar throughout differentiation, with even the most mutated stem and progenitor clones maintaining their capacity to differentiate to mature cell types in vivo. Increased contributions from productive mutant progenitors appear to underlie improved hematopoiesis in MDS following HMA therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10651766PMC
http://dx.doi.org/10.1182/blood.2022018602DOI Listing

Publication Analysis

Top Keywords

mds cmml
12
immature mature
8
mature cells
8
cells mds
8
somatic mutations
8
stem cells
8
hma therapy
8
cells
7
progenitors
5
contribution mutant
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!