Training for a takeover?

Nurs Times

Published: August 1987

Download full-text PDF

Source

Publication Analysis

Top Keywords

training takeover?
4
training
1

Similar Publications

Physiological responses derived from audiovisual perception during assisted driving are associated with the regulation of the autonomic nervous system (ANS), especially in emergencies. However, the interaction of event-related brain activity and the ANS regulating peripheral physiological indicators (i.e.

View Article and Find Full Text PDF

Objective: This study aims to investigate the causes of 2-vehicle collisions involving an autonomous vehicle (AV) and a conventional vehicle (CV). Prior research has primarily focused on the causes of crashes from the perspective of AVs, often neglecting the interactions with CVs.

Method: To address this limitation, the study proposes a classification framework for crash causation patterns in 2-vehicle collisions involving an AV and a CV, considering their interactions.

View Article and Find Full Text PDF

Objective: Attention forms the foundation for the formation of situation awareness. Low situation awareness can lead to driving performance decline, which can be dangerous in driving. The goal of this study is to investigate how different types of pre-takeover tasks, involving cognitive, visual and physical resources engagement, as well as individual attentional function, affect driver's attention restoration in conditionally automated driving.

View Article and Find Full Text PDF

The enormous diversity of bacteriophages and their bacterial hosts presents a significant challenge to predict which phages infect a focal set of bacteria. Infection is largely determined by complementary-and largely uncharacterized-genetics of adsorption, injection, cell take-over, and lysis. Here we present a machine learning approach to predict phage-bacteria interactions trained on genome sequences of and phenotypic interactions among 51 strains and 45 phage λ strains that coevolved in laboratory conditions for 37 days.

View Article and Find Full Text PDF

Takeover performance is a crucial constraint on deploying Level 3 automated driving. Not all drivers can adopt appropriate strategies to take over vehicle control during safety-critical situations. The hazard perception abilities of novice drivers may cause individual differences in urgent takeover performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!