Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Digital strategies are innovative approaches to the prevention of skin cancer, but the attrition following this kind of intervention needs to be analyzed.
Objective: The aim of this paper is to assess the dropouts from studies focused on digital strategies for the prevention of skin cancer.
Methods: We conducted this systematic review with meta-analyses and metaregression according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statements. Search terms for skin cancer, digital strategies, and prevention were combined to search PubMed, Scopus, Web of Science, CINAHL, and Cochrane Library from inception until July 2022. Randomized clinical trials that reported dropouts of participants and compared digital strategies with other interventions to prevent skin cancer in healthy or disease-free participants were included. Two independent reviewers extracted data for analysis. The Revised Cochrane Collaboration Bias tool was employed. We calculated the pooled dropout rate of participants through a meta-analysis of proportions and examined whether dropout was more or less frequent in digital interventions against comparators via an odds ratio (OR) meta-analysis. Data were pooled using a random-effects model. Subgroup meta-analyses were conducted in a meta-analysis of proportions and OR meta-analysis to assess the dropout events when data were sorted by digital interventions or control comparator. A univariate metaregression based on a random-effects model assessed possible moderators of dropout. Participants' dropout rates as pooled proportions were calculated for all groups combined, and the digital and comparator groups separately. OR>1 indicated higher dropouts for digital-based interventions. Metaregressions were performed for age, sex, length of intervention, and sample size.
Results: A total of 17 studies were included. The overall pooled dropout rate was 9.5% (95% CI 5.0-17.5). The subgroup meta-analysis of proportions revealed a dropout rate of 11.6% for digital strategies (95% CI 6.8-19.0) and 10.0% for comparators (95% CI 5.5-17.7). A trend of higher dropout rates for digital strategies was observed in the overall (OR 1.16, 95% CI 0.98-1.36) and subgroup OR meta-analysis, but no significant differences were found between the groups. None of the covariates moderated the effect size in the univariate metaregression.
Conclusions: Digital strategies had a higher dropout rate compared to other prevention interventions, but the difference was not significant. Standardization is needed regarding reporting the number of and reasons for dropouts.
Trial Registration: International Prospective Register of Systematic Reviews (PROSPERO) CRD42022329669; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=329669.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9789500 | PMC |
http://dx.doi.org/10.2196/42397 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!