Full-color-tunable hydrogels with ultrahigh stability can be used in various fields, including intracellular temperature sensing. However, constructing full-color-tunable organic nanohydrogels with excellent biocompatibility and stability for intracellular temperature sensing remains a great challenge. Here, we report a full-color-tunable nanohydrogel with ultrahigh stability as an intracellular nanothermometer. Three types of temperature-sensitive polymers with red, green, and blue fluorescence were synthesized. Through easy mixing of these three polymers with regulation of the mass ratio, these polymers can be encoded to full-color-tunable fluorescent nanohydrogels, including nanohydrogels with white-light emission (NWLEs), with sizes of about 200 nm in aqueous media. Further study suggested that the as-obtained NWLEs exhibited good performance in intracellular temperature sensing because of their ultrahigh stability on their fluorescence properties and morphologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c18201 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!