Activity-based protein profiling (ABPP) is a versatile strategy for identifying and characterizing functional protein sites and compounds for therapeutic development. However, the vast majority of ABPP methods for covalent drug discovery target highly nucleophilic amino acids such as cysteine or lysine. Here, we report a methionine-directed ABPP platform using Redox-Activated Chemical Tagging (ReACT), which leverages a biomimetic oxidative ligation strategy for selective methionine modification. Application of ReACT to oncoprotein cyclin-dependent kinase 4 (CDK4) as a representative high-value drug target identified three new ligandable methionine sites. We then synthesized a methionine-targeting covalent ligand library bearing a diverse array of heterocyclic, heteroatom, and stereochemically rich substituents. ABPP screening of this focused library identified 1oxF11 as a covalent modifier of CDK4 at an allosteric M169 site. This compound inhibited kinase activity in a dose-dependent manner on purified protein and in breast cancer cells. Further investigation of 1oxF11 found prominent cation-π and H-bonding interactions stabilizing the binding of this fragment at the M169 site. Quantitative mass-spectrometry studies validated 1oxF11 ligation of CDK4 in breast cancer cell lysates. Further biochemical analyses revealed cross-talk between M169 oxidation and T172 phosphorylation, where M169 oxidation prevented phosphorylation of the activating T172 site on CDK4 and blocked cell cycle progression. By identifying a new mechanism for allosteric methionine redox regulation on CDK4 and developing a unique modality for its therapeutic intervention, this work showcases a generalizable platform that provides a starting point for engaging in broader chemoproteomics and protein ligand discovery efforts to find and target previously undruggable methionine sites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10124963PMC
http://dx.doi.org/10.1021/jacs.2c04039DOI Listing

Publication Analysis

Top Keywords

methionine sites
12
allosteric methionine
8
cyclin-dependent kinase
8
m169 site
8
breast cancer
8
m169 oxidation
8
methionine
5
cdk4
5
activity-based oxaziridine
4
oxaziridine platform
4

Similar Publications

Proteomics- and metabolomics-based analysis of the regulation of germination in Norway maple and sycamore embryonic axes.

Tree Physiol

January 2025

Laboratoire de Biologie du Développement, UMR 7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, CNRS, F-75005 Paris, France.

Norway maple and sycamore belong to the Acer genus and produce desiccation-tolerant and desiccation-sensitive seeds, respectively. We investigated the seed germination process at the imbibed and germinated stages using metabolomic and proteomic approaches to determine why sycamore seeds germinate earlier and are more successful at establishing seedlings than Norway maple seeds under controlled conditions. Embryonic axes and embryonic axes with protruded radicles were analyzed at the imbibed and germinated stages, respectively.

View Article and Find Full Text PDF

Lead-containing wastewater has been a significant challenge in the field of wastewater treatment. Cellulose surface has a large number of active sites, which is conducive to load modification. And amino acids have rich functional groups, which is a good choice for cellulose modification.

View Article and Find Full Text PDF

Multi-copper oxidases (MCOs) are enzymes of significant interest in biotechnology due to their efficient catalysis of oxygen reduction to water, making them valuable in sustainable energy production and bio-electrochemical applications. This study employs time-dependent density functional theory (TDDFT) to investigate the electronic structure and spectroscopic properties of the Type 1 (T1) copper site in Azurin, which serves as a model for similar sites in MCOs. Four model complexes of varying complexity were derived from the T1 site, including 3 three-coordinate models and 1 four-coordinate model with axial methionine ligation, to explore the impact of molecular branches and axial coordination.

View Article and Find Full Text PDF

Background: Necrotising enterocolitis (NEC) is a devastating bowel disease that primarily occurs in infants born prematurely and is associated with abnormal gut microbiome development. While gut microbiome compositions associated with NEC have been well studied, there is a lack of experimental work investigating microbiota functions and their associations with disease onset. The aim of this pilot study was to characterise the metabolic functionality of the preterm gut microbiome prior to the onset of NEC compared with healthy controls.

View Article and Find Full Text PDF

Biomimetic Pseudopeptides to Decipher the Interplay Between Cu and Methionine-Rich Domains in Proteins.

Chemistry

December 2024

CEA lRlG: Commissariat a l'energie atomique et aux energies alternatives lnstitut de Recherche Interdisciplinaire de Grenoble, IRIG/SYMMES, FRANCE.

Maintaining tightly copper homeostasis is crucial for the survival of all living organisms, in particular microorganisms like bacteria. They have evolved a number of proteins to capture, transport and deliver Cu(I), while avoiding Fenton-like reactions. Some Cu proteins exhibit methionine-rich (Met-rich) domains, whose role remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!