"Self-Defensive" Antifouling Zwitterionic Hydrogel Coatings on Polymeric Substrates.

ACS Appl Mater Interfaces

College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang310014, P. R. China.

Published: December 2022

In biomedicine fields, biofouling can easily occur on devices such as sensors and catheters, causing some iatrogenic infections, which menace the lives and health of patients greatly. Therefore, it is of great significance to solve the problems of bacterial infection on the surfaces of medical devices. In this paper, "self-defensive" and antifouling zwitterionic hydrogel coatings were prepared by network interpenetration of the hydrogel and the polymeric substrates. The zwitterionic polysulfobetaine methacrylate (PSBMA) hydrogel coatings resisted most of the bacteria to adhere on the substrates. When a few bacteria were lucky to escape the antifouling defense and adhered to the coatings, gentamicin sulfate (GS) would be released under the trigger of a weakly acidic environment caused by bacterial metabolism to kill these bacteria. Simultaneously, the coatings of the bacteria-adhering sites would be degraded by hyaluronidase secreted by these bacteria and peeled off to remove the bacteria and renew the antifouling surfaces. The antifouling properties and mechanism of the self-defensive behavior of the hydrogel coatings on polymeric substrates were investigated. Furthermore, the and antibacterial performances, as well as the biocompatibility of the coatings, were demonstrated. The results suggested that the self-defensive antifouling zwitterionic hydrogel coatings hold great potential to be used on the surfaces of polymeric medical devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c17272DOI Listing

Publication Analysis

Top Keywords

hydrogel coatings
20
antifouling zwitterionic
12
zwitterionic hydrogel
12
polymeric substrates
12
"self-defensive" antifouling
8
coatings
8
coatings polymeric
8
medical devices
8
hydrogel
6
antifouling
5

Similar Publications

Purpose: The objective was to use cyclic tensile loading to compare the gap formation at suture site of three different suture materials to repair bovine radial meniscal tears: (1) polyglactin sutures, (2) tough adhesive puncture sealing (TAPS) sutures and (3) ultra-high molecular weight polyethylene (UHMWPE) sutures.

Methods: Twelve ex vivo bovine knees were dissected to retrieve the menisci. Complete radial tears were performed on 24 menisci, which were then separated into three groups and repaired using either pristine 2-0 polyglactin sutures, TAPS sutures (2-0 polyglactin sutures coated with adhesive chitosan/alginate hydrogels) or 2-0 UHMWPE sutures with a single stitch.

View Article and Find Full Text PDF

Managing wounds infected with multi-drug-resistant (MDR) bacteria remains a significant public health challenge in clinical settings. While multifunctional hydrogels are commonly employed to treat skin infections, there is a scarcity of hydrogels that effectively combine cationic guar gum (CG) with both potent antimicrobial and safe therapeutic actions. This study introduces a novel pH responsive, dual-dynamically crosslinked hydrogel (CFC-PDA/Ag), synthesized by crosslinking CG with polydopamine (PDA)-coated silver nanozymes (PDA/PM-AgNPs).

View Article and Find Full Text PDF

Suppression of FcεRI-evoked Degranulation in RBL-2H3 Cells on Gelatin Methacryloyl Hydrogel.

Cell Biochem Biophys

December 2024

School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan.

Cell-extracellular matrix (ECM) interactions play multiple roles in developmental, physiological, and pathological processes. ECM stiffness substantially affects cellular morphology, migration, and function. In this study, we investigated the effect of ECM comprising gelatin methacryloyl (GelMA) on the activation of rat basophilic leukemia (RBL-2H3) cells, a model mast cell line.

View Article and Find Full Text PDF

In this study, we developed a novel composite catalytic hydrogel, which integrates excellent mechanical properties, catalytic activity, and sensing performance. Discarded hydrogel sensors are reused as templates for in-situ generation of metal nanoparticles, and multifunctional hydrogels combining sensing and catalysis are realized. Polyacrylamide (PAM) provides a three-dimensional network structure, while octadecyl methacrylate (SMA) acts as a hydrophobic association center, enhancing the structural stability of the hydrogel.

View Article and Find Full Text PDF

The adhesion of marine organisms to marine facilities negatively impacts human productivity. This phenomenon, known as marine fouling, constitutes a serious issue in the marine equipment industry. It increases resistance for ships and their structures, which, in turn, raises fuel consumption and reduces ship speed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!