Plasmonic nanocavities have been used as a novel platform for studying strong light-matter coupling, opening access to quantum chemistry, material science, and enhanced sensing. However, the biomolecular study of cavity quantum electrodynamics (QED) is lacking. Here, we report the quantum electrodynamic behavior of chlorophyll- in a plasmonic nanocavity. We construct an extreme plasmonic nanocavity using Au nanocages with various linker molecules and Au mirrors to obtain a strong coupling regime. Plasmon resonance energy transfer (PRET)-based hyperspectral imaging is applied to study the electrodynamic behaviors of chlorophyll- in the nanocavity. Furthermore, we observe the energy level splitting of chlorophyll-, similar to the cavity QED effects due to the light-matter interactions in the cavity. Our study will provide insight for further studies in quantum biological electron or energy transfer, electrodynamics, the electron transport chain of mitochondria, and energy harvesting, sensing, and conversion in both biological and biophysical systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.2c02917 | DOI Listing |
ACS Nano
January 2025
Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
Controlling the light emitted by individual molecules is instrumental to a number of advanced nanotechnologies ranging from super-resolution bioimaging and molecular sensing to quantum nanophotonics. Molecular emission can be tailored by modifying the local photonic environment, for example, by precisely placing a single molecule inside a plasmonic nanocavity with the help of DNA origami. Here, using this scalable approach, we show that commercial fluorophores may experience giant Purcell factors and Lamb shifts, reaching values on par with those recently reported in scanning tip experiments.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China.
Since 1997, driven by advancements in nanoscience, single-molecule plasmon-enhanced Raman spectroscopy (SM-PERS) has developed into a powerful technique for ultrasensitive trace analysis through fingerprint vibrational chemical information. The nanocavity between the coupled plasmonic nanostructures, offering an exceptionally high Raman signal enhancement factor (i.e.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Materials Science and Engineering, Centre for Functional Photonics, and Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong S.A.R., 999077, China.
The emission efficiency of interlayer excitons (IEs) in twisted 2D heterostructures has long suffered from momentum mismatch, limiting their applications in ultracompact excitonic devices. Here, we report strong room-temperature emission of momentum-forbidden IE in 30°-twisted MoS/WS heterobilayers. Utilizing a plasmonic nanocavity, the Purcell effect boosts the IE emission intensity in the cavity by over 2 orders of magnitude.
View Article and Find Full Text PDFNano Lett
January 2025
State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871 Beijing, China.
ACS Photonics
December 2024
School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, U.K.
Tightly confined plasmons in metal nanogaps are highly sensitive to surface inhomogeneities and defects due to the nanoscale optical confinement, but tracking and monitoring their location is hard. Here, we probe a 1-D extended nanocavity using a plasmonic silver nanowire (AgNW) on mirror geometry. Morphological changes inside the nanocavity are induced locally using optical excitation and probed locally through simultaneous measurements of surface enhanced Raman scattering (SERS) and dark-field spectroscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!