A new generation of rapid, easy to use and robust colorimetric point of care (POC) nanocellulose coated-paper sensors to measure glucose concentration in blood is presented in this study. The cellulose gel containing the enzyme with co-additive is coated and dried onto a paper substrate. Nanocellulose gel is used to store, immobilize and stabilize enzymes within its structure to prolong enzyme function and enhance its availability. Here, we immobilize glucose oxidase within the gel structure to produce a simple colorimetric blood glucose sensor. Increase in blood glucose concentration increases the concentration of reaction product which decreases the system pH detected by the pH indicative dye entrapped in the nanocellulose gel. The sensor produces a color change from red to orange as pH decreases due to the enzymatic reaction of glucose into gluconic acid and hydrogen peroxide. This sensor can measure glucose concentrations of 7-13 mM (medical range for diabetes control) at temperatures of 4°C-40°C. Stability tests confirm that no denaturation of enzyme occurs by measuring enzyme activity after 4 weeks. A prototype device is designed to instantly measure the glucose concentration from blood in a two steps process: 1) red blood cell separation and 2) quantification of glucose by color change. This study demonstrates nanocellulose sensor as an economical, robust, and sensitive diagnostic technology platform for a broad spectrum of diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9723229 | PMC |
http://dx.doi.org/10.3389/fbioe.2022.1052242 | DOI Listing |
Vet Anim Sci
March 2025
Animal Science Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran.
This study aims to measure the effects of different dietary concentrations of triticale hay (TH) on productive performance, carcass characteristics, microbial protein synthesis (MPS), ruminal and blood variables, and antioxidant power in 40 fattening male Gray Shirazi lambs (BW of 33.2 ± 1.1 kg) over 81 days in a completely randomized design (10 animals/diet).
View Article and Find Full Text PDFAm J Prev Cardiol
March 2025
Leon H. Charney Division of Cardiology, Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA.
Background: Digital health technologies have been proposed as a potential solution to improving maternal cardiovascular (CV) health in the postpartum (PP) period. In this context we performed a systematic scoping review of digital health interventions designed to improve PP CV health.
Methods: We conducted a systematic review of PubMed/MEDLINE, EMBASE, CINAHL, Web of Science and the Cochrane Library.
Int J Gen Med
January 2025
Division of Endocrinology and Metabolism, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan.
Purpose: Glucose metabolism is associated with several endocrine disorders. Anti-diabetes drugs are crucial in controlling diabetes and its complications; nevertheless, few studies have been carried out involving endocrine function. This study aimed to investigate the association between anti-diabetes drugs and endocrine parameters.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310000, PR China.
Background: Ferroptosis plays an important role in the development of diabetic nephropathy (DN). However, its specific regulatory mechanisms remain unclear.
Methods: MPC5 cells were cultured in high glucose (HG) medium to stimulate the HG environment in vitro.
Conserv Physiol
January 2025
Wildlife Ecology and Conservation Science Lab, Department of Biology, Northern Michigan University, 1401 Presque Isle Ave, Marquette, MI 49855-5301, USA.
Faecal cortisol metabolites (FCMs) are increasingly used to index physiological stress in wildlife. Cortisol and other stress hormones act to mobilize glucose, providing energy for the organism to respond to environmental perturbations. Cortisol, the predominant glucocorticoid (GC) in most mammals, is metabolized by the liver and excreted as FCMs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!