Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Generalized zero-shot learning (GZSL) aims to classify seen classes and unseen classes that are disjoint simultaneously. Hybrid approaches based on pseudo-feature synthesis are currently the most popular among GZSL methods. However, they suffer from problems of negative transfer and low-quality class discriminability, causing poor classification accuracy. To address them, we propose a novel GZSL method of distinguishable pseudo-feature synthesis (DPFS). The DPFS model can provide high-quality distinguishable characteristics for both seen and unseen classes. Firstly, the model is pretrained by a distance prediction loss to avoid overfitting. Then, the model only selects attributes of similar seen classes and makes sparse representations based on attributes for unseen classes, thereby overcoming negative transfer. After the model synthesizes pseudo-features for unseen classes, it disposes of the pseudo-feature outliers to improve the class discriminability. The pseudo-features are fed into a classifier of the model together with features of seen classes for GZSL classification. Experimental results on four benchmark datasets verify that the proposed DPFS has GZSL classification performance better than that in existing methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9726268 | PMC |
http://dx.doi.org/10.1155/2022/6220501 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!