Catalyst-Free Synthesis of Covalent Adaptable Network (CAN) Polyurethanes from Lignin with Editable Shape Memory Properties.

ChemSusChem

Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.

Published: March 2023

Here a new strategy of catalyst-free direct synthesis of covalent adaptable network polyurethanes (LPUs) from lignin with editable shape memory effect is reported. Using unmodified lignin, PEG, and isocyanate under the condition of the isocyanate index less than 1.0 (NCO/OH<1.0), a variety of LPUs are obtained. When NCO/OH=0.8, a stable cross-linked network can be formed (ex. the gel content of LPU50-0.8 was 98±0.3 %). The activation energy (E ) value of LPUs is similar to that of polyhydroxyurethanes (PHUs), at around 110 kJ mol . With an increase of lignin content, the LPUs show a transition from ductile fracture to brittle fracture mode. And the mechanical properties of LPUs are significantly enhanced after extrusion processing, with the maximum modulus reaching 649±26 MPa and the maximum toughness up to 9927±111 kJ m . The improvement in mechanical properties is due to the homogenization of complex cross-linked network under the powerful external force of the extruder and the lignin that originally was free in the system participated in the exchange reactions. Moreover, LPUs can also be prepared continuously in one step by using an extruder as the reactor. In addition, LPU50-0.8 has an editable shape memory effect. This study develops a novel method for the synthesis of LPU from lignin with NCO/OH<1.0, showcasing new possibilities for value-added utilization of lignin, and expands the bio-based products portfolio from biomass feedstock to help meet future green manufacturing demands.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.202202071DOI Listing

Publication Analysis

Top Keywords

synthesis covalent
8
covalent adaptable
8
adaptable network
8
network polyurethanes
8
lignin editable
8
editable shape
8
shape memory
8
catalyst-free synthesis
4
polyurethanes lignin
4
memory properties
4

Similar Publications

Radical covalent organic frameworks (RCOFs) have demonstrated significant potential in redox catalysis and energy conversion applications. However, the synthesis of stable RCOFs with well-defined neutral carbon radical centers is challenging due to the inherent radical instability, limited synthetic methods and characterization difficulties. Building upon the understanding of stable carbon radicals and structural modulations for preparing crystalline COFs, herein we report the synthesis of a crystalline carbon-centered RCOF through a facile post-oxidation process.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs), known for their exceptional in situ encapsulation and precise release capabilities, are emerging as pioneering drug delivery systems. This study introduces a hypoxia-responsive COF designed to encapsulate the chemotherapy drug gambogic acid (GA) in situ. Bimetallic gold-palladium islands were grown on UiO-66-NH (UiO) to form UiO@Au-Pd (UAPi), which were encapsulated with GA through COF membrane formation, resulting in a core-shell structure (UAPiGC).

View Article and Find Full Text PDF

Since its conceptualization, click chemistry in all its variants has proven to be a superior synthesis protocol, compared to conventional methods, for forming new covalent bonds under mild conditions, orthogonally, and with high yields. If a term like reactive resilience could be established, click reactions would be good examples, as they perform better under increasingly challenging conditions. Particularly, highly hindered couplings that perform poorly with conventional chemistry protocols-such as those used to conjugate biomacromolecules (e.

View Article and Find Full Text PDF

Free pectinase is commonly employed as a biocatalyst in wine clarification; however, its removal, recovery, and reuse are not feasible. To address these limitations, this study focuses on the immobilization of a commercial pectinolytic preparation (Pec) onto highly porous polymer microparticles (MPs). Seven microparticulate polyamide (PA) supports, namely PA4, PA6, PA12 (with and without magnetic properties), and the copolymeric PA612 MP, were synthesized through activated anionic ring-opening polymerization of various lactams.

View Article and Find Full Text PDF

Covalent Plant Natural Product that Potentiates Antitumor Immunity.

J Am Chem Soc

January 2025

Division of Biochemistry, Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan.

Despite the unprecedented therapeutic potential of immune checkpoint antibody therapies, their efficacy is limited partly by the dysfunction of T cells within the cancer microenvironment. Combination therapies with small molecules have also been explored, but their clinical implementation has been met with significant challenges. To search for antitumor immunity activators, the present study developed a cell-based system that emulates cancer-attenuated T cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!