Multibody analysis and soft tissue strength refute supersonic dinosaur tail.

Sci Rep

Department of Aerospace Science and Technology, Politecnico di Milano, via La Masa 34, 20156, Milan, Italy.

Published: December 2022

Sauropod dinosaurs are well known for their massive sizes and long necks and tails. Among sauropods, flagellicaudatan dinosaurs are characterized by extreme tail elongation, which has led to hypotheses regarding tail function, often compared to a whip. Here, we analyse the dynamics of motion of a 3D model of an apatosaurine flagellicaudatan tail using multibody simulation and quantify the stress-bearing capabilities of the associated soft tissues. Such an elongated and slender structure would allow achieving tip velocities in the order of 30 m/s, or 100 km/h, far slower than the speed of sound, due to the combined effect of friction of the musculature and articulations, as well as aerodynamic drag. The material properties of the skin, tendons, and ligaments also support such evidence, proving that in life, the tail would not have withstood the stresses imposed by travelling at the speed of sound, irrespective of the conjectural 'popper', a hypothetical soft tissue structure analogue to the terminal portion of a bullwhip able to surpass the speed of sound.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9732322PMC
http://dx.doi.org/10.1038/s41598-022-21633-2DOI Listing

Publication Analysis

Top Keywords

speed sound
12
soft tissue
8
tail
5
multibody analysis
4
analysis soft
4
tissue strength
4
strength refute
4
refute supersonic
4
supersonic dinosaur
4
dinosaur tail
4

Similar Publications

Photoacoustic tomography (PAT) enables non-invasive cross-sectional imaging of biological tissues, but it fails to map the spatial variation of speed-of-sound (SOS) within tissues. While SOS is intimately linked to density and elastic modulus of tissues, the imaging of SOS distribution serves as a complementary imaging modality to PAT. Moreover, an accurate SOS map can be leveraged to correct for PAT image degradation arising from acoustic heterogeneities.

View Article and Find Full Text PDF

Relying on the Beijing-Zhangjiakou high-speed railway Cao Mao Shan tunnel project, blasting vibration monitoring and sound wave testing experiments were carried out. The monitoring results show that the blasting vibration velocity corresponding to the initial support satisfies the Sadowski formula. The results of the sonic test show that with the increase of blasting times, the cumulative damage increases gradually, but the blasting damage increment shows a downward trend.

View Article and Find Full Text PDF

Background: With increasing evidence supporting three-dimensional (3D) automated breast (AB) ultrasound (US) for supplemental screening of breast cancer in increased-risk populations, including those with dense breasts and in limited-resource settings, there is an interest in developing more robust, cost-effective, and high-resolution 3DUS imaging techniques. Compared with specialized ABUS systems, our previously developed point-of-care 3D ABUS system addresses these needs and is compatible with any conventional US transducer, which offers a cost-effective solution and improved availability in clinical practice. While conventional US transducers have high in-plane resolution (axial and lateral), their out-of-plane resolution is constrained by the poor intrinsic elevational US resolution.

View Article and Find Full Text PDF

Comparison of ultrasound to MR and histological methods for liver fat quantification.

Eur J Radiol

January 2025

MR-Unit, Dept. Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague 4, Czech Republic.

Purpose: This prospective pilot study aims to evaluate the capabilities of novel quantitative ultrasound (QUS) methods based on attenuation (Att.PLUS) and sound speed (SSp.PLUS) for detecting liver fat.

View Article and Find Full Text PDF

Wingbeat frequency estimation is an important aspect for the study of avian flight, energetics, and behavioral patterns, among others. Hummingbirds, in particular, are ideal subjects to test a method for this estimation due to their fast wing motions and unique aerodynamics, which results from their ecological diversification, adaptation to high-altitude environments, and sexually selected displays. Traditionally, wingbeat frequency measurements have been done via "manual" image/sound processing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!