Cholesterol overloading stress damages normal cellular functions in hepatocytes and induces metabolic disorders to facilitate the development of multiple diseases, including cardiovascular diseases, which seriously degrades the life quality of human beings. Recent data suggest that the Berberis vulgaris L. extract berberine is capable of regulating cholesterol homeostasis, which is deemed as potential therapeutic drug for the treatment of cholesterol overloading-associated diseases, but its detailed functions and molecular mechanisms are still largely unknown. In the present study, we evidenced that berberine suppressed cell apoptosis in high-cholesterol-diet mice liver and cholesterol-overloaded mice hepatocytes. Also, cholesterol overloading promoted reactive oxygen species (ROS) generation to trigger oxidative damages in hepatocytes, which were reversed by co-treating cells with both berberine and the ROS scavenger N-acetylcysteine (NAC). Moreover, the underlying mechanisms were uncovered, and we validated that berberine downregulated Keap1, and upregulated Nrf2 to activate the anti-oxidant Nrf2/HO-1 signaling pathway in cholesterol overloading-treated hepatocytes, and both Keap1 upregulation and Nrf2 downregulation abrogated the suppressing effects of berberine on cell apoptosis in the hepatocytes with cholesterol exposure. Taken together, we concluded that berberine activated the anti-oxidant Keap1/Nrf2/HO-1 pathway to eliminate cholesterol overloading-induced oxidative stress and apoptotic cell death in mice hepatocytes, and those evidences hinted that berberine might be used as putative therapeutic drug for the treatment of cholesterol overloading-associated cardiovascular diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11626-022-00737-z | DOI Listing |
PLoS Genet
January 2025
Department of Biology, Boston University, Boston Massachusetts, United States of America.
The death and clearance of nurse cells is a consequential milestone in Drosophila melanogaster oogenesis. In preparation for oviposition, the germline-derived nurse cells bequeath to the developing oocyte all their cytoplasmic contents and undergo programmed cell death. The death of the nurse cells is controlled non-autonomously and is precipitated by epithelial follicle cells of somatic origin acquiring a squamous morphology and acidifying the nurse cells externally.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Laboratory of Obesity and Aging Research, Cardiovascular Branch, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892.
Mitochondrial endonuclease G (EndoG) contributes to chromosomal degradation when it is released from mitochondria during apoptosis. It is presumed to also have a mitochondrial function because EndoG deficiency causes mitochondrial dysfunction. However, the mechanism by which EndoG regulates mitochondrial function is not known.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Orthopedics, Shanghai Pudong New Area People's Hospital, Shanghai, China.
Aim: To explore the role of the hub gene Transforming Growth Factor Beta Induced (TGFBI) in Intervertebral disc degeneration (IDD) pathogenesis and its regulatory relationship with Membrane Associated Ring-CH-Type Finger 8 (MARCHF8).
Background: IDD is a prevalent musculoskeletal disorder leading to spinal pathology. Despite its ubiquity and impact, effective therapeutic strategies remain to be explored.
Am J Case Rep
January 2025
Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
BACKGROUND Studies using transgenic mouse models have demonstrated that estrogen is necessary for the development of cervical cancer, particularly in tissues responsive to estrogen. Estrogen also protects cervical cancer cells from apoptosis, suggesting its role in the survival and persistence of cancer cells. CASE REPORT An 84-year-old woman with diabetes mellitus, hypertension, and stage III chronic renal failure was diagnosed with cervical squamous cell carcinoma, FIGO stage IB2.
View Article and Find Full Text PDFJ Nat Med
January 2025
Department of Endocrinology, Cangzhou Central Hospital, No. 16 West Xinhua Road, Cangzhou, 061000, Hebei, China.
Thioredoxin-interacting protein (TXNIP), as a pivotal protein in the cellular stress response, plays a significant role in the progression of diabetic nephropathy (DN). Consequently, therapeutic strategies aimed at targeting TXNIP may offer novel interventions for patients with DN. Our study is to explore the therapeutic potential of targeting TXNIP in mitigating renal tubular injury induced by hyperglycemia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!