A suitable substitution of carbazole with a π-spacer group like cyanoethynylethene offers exciting future opportunities in terms of smart nonlinear optical material. In the quest of better organic nonlinear optical material, we have designed a series of derivatives based on carbazole and cyanoethynylethene fragment combinations in a unique fashion by employing the density functional (DFT) methods. The calculated time-dependent density functional theory (TD-DFT) calculations infer that the gigantic first static hyperpolarizability (β) values are due to a lower energy gap and higher transition dipole moment for the crucial electronic transition. Furthermore, to see the in-depth execution for enhanced second-order nonlinear optics and the structure property relationship on nonlinear optics (NLO) behavior, we have performed frontier molecular orbitals (FMO), density of state (DOS), and transition density matrix (TDM). Furthermore, CAM-B3LYP functional-based calculated results infer that the designed molecule 10 show the first static hyperpolarizability is 923.93 × 10 esu which is 69 times larger than that of p-nitroaniline.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00894-022-05401-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!