Several pesticides (used in vegetable production) have recently been identified as potential endocrine disruptors. The current study aimed to determine the consumer exposure risk associated with eating contaminated vegetables. The European Union-citrate buffered QuEChERS extraction protocol, validated in accordance with the European Union guidelines, was used to monitor selected endocrine-disrupting pesticides in eggplant/brinjal (Solanum melongena L.) and cauliflower (Brassica oleracea) marketed in Rawalpindi/Islamabad, Pakistan. A total of 80 and 69 percent of eggplant/brinjal (n = 25) and cauliflower (n = 26) samples were found contaminated, respectively. Sixty-five percent of cauliflower samples were found non-contaminated with both European Union (EU) and Codex Alimentarius Commission (CAC) maximum residue limits (MRL), while 20 % of brinjal samples were found to be non-compliant with EU-MRL. Both vegetables contained high levels of the androgen antagonist chlorpyrifos and the thyroid hormone inhibitor cyhalothrin-lambda. The estimated acute health risk associated with dietary exposure to chlorpyrifos and cyhalothrin-lambda in cauliflower for both males and females was found to be greater than 200 % of the FAO/WHO Joint Meeting on Pesticide Residues' (JMPR) established acute reference dose. The estimated chronic health risk for all studied endocrine-disrupting pesticides (0-5.27 %) indicates zero to very low health risk for studied population groups.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-022-24624-y | DOI Listing |
Ecotoxicol Environ Saf
January 2025
State Key Lab, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China. Electronic address:
Environmental endocrine disruptors constitute a category of exogenous compounds that interfere with the endocrine system's functions in organisms or cells. As a class of particularly representative endocrine-disrupting chemicals, the accumulation of per- and polyfluoroalkyl substances potentially leads to adverse health effects, including hormonal disruptions, developmental issues, and cancer. However, the classification of these disruptors is intricate, and the data on their potential health risks is scattered.
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2024
Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Department of Maternal and Child Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China. Electronic address:
Neurotoxicity of organophosphate esters (OPEs) and organophosphorus pesticides (OPPs) has been documented in toxicological studies, though epidemiological evidence remains inconsistent. The developing fetal brain is susceptible to environmental exposures. Thus, we aim to investigate how prenatal exposure to OPEs and OPPs as mixture affects offspring neurodevelopment in preschool-aged children.
View Article and Find Full Text PDFEnviron Health Perspect
December 2024
Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA.
Background: Increasing evidence supports an association of endocrine-disrupting chemical (EDC) exposures with adverse biological effects in humans and wildlife. Recent studies reveal that health consequences of environmental exposures may persist or emerge across generations. This creates a dual conundrum: that we are exposed to contemporary environmental chemicals overlaid upon the inheritance of our ancestors' exposure profiles.
View Article and Find Full Text PDFEnviron Health Perspect
December 2024
Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA.
Background: Endocrine-disrupting chemicals (EDCs) are exogenous chemical compounds that interfere with the normal function of the endocrine system and are linked to direct and inherited adverse effects in both humans and wildlife. Legacy EDCs such as polychlorinated biphenyls (PCBs) are no longer used yet remain detectable in biological specimens around the world; concurrently, we are exposed to newer EDCs like the fungicide vinclozolin (VIN). This combination of individuals' direct environmental chemical exposures and any heritable changes caused by their ancestors' chemical exposures leads to a layered pattern of both direct and ancestrally inherited exposures that might have cumulative effects over generations.
View Article and Find Full Text PDFFront Public Health
December 2024
PERITOX-Périnatalité et Risques Toxiques-UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardie Jules Verne, CEDEX 1, Amiens, France.
Over the last decades, human infertility has become a major concern in public health, with severe societal and health consequences. Growing evidence shows that endocrine disruptors chemicals (EDCs) have been considered as risk factors of infertility. Their presence in our everyday life has become ubiquitous because of their universal use in food and beverage containers, personal care products, cosmetics, phytosanitary products.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!