Biomechanical traits of salt marsh vegetation are insensitive to future climate scenarios.

Sci Rep

Helmholtz Centre for Polar and Marine Research, Wadden Sea Station, Alfred Wegener Institute, Hafenstraße 43, 25992, List/Sylt, Germany.

Published: December 2022

AI Article Synopsis

  • Salt marshes play a key role in coastal protection by reducing wave and flow energy, making their resilience against climate change critical.
  • A mesocosm experiment tested the effects of increased temperature and CO2 on two common salt marsh plants, Spartina anglica and Elymus athericus, over 13 weeks.
  • Elymus athericus showed no changes, indicating it may be resistant to climate impacts, while Spartina anglica exhibited some growth enhancements, suggesting that overall, salt marshes are likely to maintain their protective capacity despite future environmental changes.

Article Abstract

Salt marshes provide wave and flow attenuation, making them attractive for coastal protection. It is necessary to predict their coastal protection capacity in the future, when climate change will increase hydrodynamic forcing and environmental parameters such as water temperature and CO content. We exposed the European salt marsh species Spartina anglica and Elymus athericus to enhanced water temperature (+ 3°) and CO (800 ppm) levels in a mesocosm experiment for 13 weeks in a full factorial design. Afterwards, the effect on biomechanic vegetation traits was assessed. These traits affect the interaction of vegetation with hydrodynamic forcing, forming the basis for wave and flow attenuation. Elymus athericus did not respond to any of the treatments suggesting that it is insensitive to such future climate changes. Spartina anglica showed an increase in diameter and flexural rigidity, while Young's bending modulus and breaking force did not differ between treatments. Despite some differences between the future climate scenario and present conditions, all values lie within the natural trait ranges for the two species. Consequently, this mesocosm study suggests that the capacity of salt marshes to provide coastal protection is likely to remain constantly high and will only be affected by future changes in hydrodynamic forcing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9731943PMC
http://dx.doi.org/10.1038/s41598-022-25525-3DOI Listing

Publication Analysis

Top Keywords

future climate
16
coastal protection
12
hydrodynamic forcing
12
salt marsh
8
insensitive future
8
salt marshes
8
marshes provide
8
wave flow
8
flow attenuation
8
water temperature
8

Similar Publications

Soil moisture drought and diverse impacts on vegetation across the Tibetan Plateau in recent three decades.

Sci Total Environ

January 2025

Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China. Electronic address:

Climate warming is presumed to cause drought on the Tibetan Plateau (TP), posing severe threats to local vegetation and ecosystems. Currently, soil moisture (SM) drought and its effects on vegetation growth have been rarely reported, due to lacking observations and data uncertainties. Here we used ERA5-Land, ESA CCI, and GLDAS Noah SM to investigate the spatiotemporal patterns of summertime (May-September) SM drought and its impacts on vegetation over 1995-2018.

View Article and Find Full Text PDF

Using damage functions to map heritage climatology at a global scale.

Sci Total Environ

January 2025

University College London, Central House, 14 Upper Woburn Place, London WC1H 0NN, UK. Electronic address:

This paper investigates heritage climatology through global analysis of damage functions for collections, aiming to learn about the reliability of these functions and the field itself. It addresses the growing interest in geospatial analysis of climate hazards for cultural heritage, proposing parameters that refine climate-related deterioration processes. Using global daily climate data from 1991 to 2020, the study assesses damage functions reliant on temperature and relative humidity inputs, including damage functions for paper and metals, alongside indices for humidity fluctuations and mould growth.

View Article and Find Full Text PDF

Molecular advances in research and applications of male sterility systems in tomato.

Plant Physiol Biochem

January 2025

Department of Vegetable Science, Institute of Agricultural Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751029, India.

Tomato, belonging to the nightshade family, is globally considered as a model system for classical and molecular genetics, genomics, and reproductive developmental studies. In the current scenario of climate change, hybrid development is among the crucial elements in the genetic improvement of crop plants. The phenomenon of male sterility is a viable approach for ensuring hybrid seed purity and reducing the cost of hybrid seed production.

View Article and Find Full Text PDF

CO-driven ion exchange for ammonium recovery from source-separated urine.

Water Res

January 2025

Georgia Tech Shenzhen Institute (GTSI), Tianjin University, Shenzhen 518067, China. Electronic address:

Nitrogen recovery from urine and CO utilization are both vital for achieving a circular economy and mitigating climate change. Divided engineering solutions have been proposed to address either problem, but there is still a lack of integrated technologies to simultaneously tackle the two tasks. We demonstrated CO-driven ion exchange for nitrogen recovery (CIXNR) from urine and evaluated the process in Malawi.

View Article and Find Full Text PDF

The concepts of planetary boundaries are influential in the sustainability literature and assist in delineating the 'safe operating spaces' beyond which critical Earth system processes could collapse. Moving away from our current trajectory towards 'hothouse Earth' will require knowledge of how Earth systems have varied throughout the Holocene, and whether and how far we have deviated from past ranges of variability. Such information can inform decisions about where change could be resisted, accepted or where adaptation is inevitable.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!