MeSWEET15a/b genes play a role in the resistance of cassava (Manihot esculenta Crantz) to water and salt stress by modulating sugar distribution.

Plant Physiol Biochem

CSIRO, Agriculture Flagship, Private Bag No. 5, Wembley, WA, 6913, Australia; School of Plant Biology, The University of Western Australia, 35 Stirling Hwy, Crawley, WA, 6009, Australia.

Published: January 2023

AI Article Synopsis

  • The sugar transporter SWEET is crucial for plant growth, carbon distribution, and resistance to environmental stresses, especially in cassava under water and salt stress.
  • Researchers identified 28 MeSWEET genes in cassava, focusing on MeSWEET15a/b, which are located on the cell membrane and primarily transfer sucrose.
  • Silencing MeSWEET15a/b genes resulted in increased sucrose in leaves, altered carbon allocation favoring starch accumulation in leaves over roots, and enhanced tolerance to water and salt stress through the accumulation of osmolytes.

Article Abstract

The sugar transporter SWEET plays a role in plant growth, carbon allocation, and abiotic stress resistance. We examined the function of SWEET in cassava (Manihot esculenta Crantz) under water and salt stress. Bioinformatics, subcellular localization, yeast deficient complementation, and virus-induced gene silencing (VIGS) were used to examine the function of SWEET in cassava. Twenty-eight MeSWEETs genes were found based on the conserved domain MtN3/saliva of SWEET transporters, two MeSWEET15a/b of them were identified by phylogenetic analysis, which were located on the cell membrane. They transfer sucrose, fructose, glucose, and mannitol from culture media to yeast cells, predominately transferring sucrose via bleeding fluid saps in plant. Leaf sucrose content was increased in MeSWEET15a/b-silenced cassava plants, resulting in changes in carbon distribution, with an increase in starch accumulation in the leaves and a decrease in starch accumulation in the roots. The silencing of MeSWEET15a/b genes led to tolerance to water and salt stress, consistent with a high accumulation of osmolytes, and low lipid membrane peroxidation. Changes in sugar distribution increased the expression of MeTOR and MeE2Fa in pTRV2-MeSWEET15a and pTRV2-MeSWEET15b cassava leaves. MeSWEET15a/b acts as pivotal modulators of sugar distribution and tolerance to water and high salt stress in cassava.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2022.11.027DOI Listing

Publication Analysis

Top Keywords

salt stress
16
water salt
12
sugar distribution
12
mesweet15a/b genes
8
cassava manihot
8
manihot esculenta
8
esculenta crantz
8
crantz water
8
function sweet
8
sweet cassava
8

Similar Publications

is a traditional Chinese medicinal herb rich in various bioactive secondary metabolites, such as alkaloids and flavonoids, and exhibits remarkable resistance to abiotic stress. The WRKY transcription factor (TF) family is one of the largest plant-specific TF families and plays a crucial role in plant growth, development, and responses to abiotic stress. However, a comprehensive genome-wide analysis of the WRKY gene family in has not yet been conducted.

View Article and Find Full Text PDF

Objective: Studies have found that cancer patients with dependent children exhibit high symptoms of anxiety, depression, and worry. Patients' parenting concerns can negatively impact their own and their family's adjustment to the cancer experience. However, relatively little is known about parenting concerns of partners of cancer patients, or associations between parenting concerns and couples' relationship adjustment.

View Article and Find Full Text PDF

Background: Improving the germination performance of bread wheat is an important breeding target in many wheat-growing countries where seedlings are often established in soils with high salinity levels. This study sought to characterize the molecular mechanisms underlying germination performance in salt-stressed wheat. To achieve this goal, a genome-wide association study (GWAS) was performed on 292 Iranian bread wheat accessions, including 202 landraces and 90 cultivars.

View Article and Find Full Text PDF

GmERF13 mediates salt inhibition of nodulation through interacting with GmLBD16a in soybean.

Nat Commun

January 2025

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao, Shandong, China.

While the genetic regulation of nodule formation has been well explored, the molecular mechanisms by which abiotic stresses, such as salt stress, impede nodule formation remain largely elusive. Here, we identify four APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors, GmERF13s, that are induced by salt stress and play key roles in salt-repressed nodulation. Loss of GmERF13 function increases nodule density, while its overexpression suppresses nodulation.

View Article and Find Full Text PDF

Discrimination, Violence, Mental Health, and Substance Use by Age and Cancer History Among LGBTQ+ Individuals.

J Adolesc Young Adult Oncol

January 2025

Department of Health Policy and Management, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

Young adult (YA) LGBTQ+ cancer survivors face inequities and unmet needs that impact their well-being. However, the impact of age and cancer among LGBTQ+ individuals have not been adequately assessed. The North Carolina LGBTQ+ Health Needs Assessment survey, conducted at local Pride events, aimed to collect data to describe the well-being of LGBTQ+ people in NC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!