Acidification and eutrophication are common limnological stressors impacting many water bodies across the globe. While the negative impacts of these stressors on limnetic communities are generally known, their influence on the accumulation of specific sediment constituents, such as metals, remains unclear. Benefitting from past research and long-term monitoring, lakes at the International Institute for Sustainable Development - Experimental Lakes Area (IISD-ELA) in northwestern Ontario, Canada are invaluable to understand the extent to which these two common lake stressors can influence the accumulation of metals in lacustrine sediment. To address these issues, sediment cores were retrieved from six lakes: four were subjected to past experimental acidification or eutrophication and two were reference lakes. Focusing on elemental lead (Pb), a metal known to have accumulated in lake sediments worldwide and generally exhibiting a relatively small fraction of terrigenous input, we assessed the hypothesis that greater accumulation of Pb would be observed in lakes subjected to eutrophication, while the reverse was expected for lakes subjected to acidification experiments. Our analyses support this hypothesis, whereby relatively low enrichment was recorded in sediments deposited in the acidified lake during the manipulation era. On the other hand, eutrophied lakes demonstrated a strong enrichment in Pb during experimental manipulation. When investigating the mechanisms behind these divergent responses, we found epilimnetic dissolved organic carbon (DOC) and conductivity were associated with a relative increase in Pb accumulation in sediments. Acidic pH is also expected to mediate these responses by decreasing epilimnetic DOC concentrations leading to reduced Pb accumulation in the sediment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2022.120829DOI Listing

Publication Analysis

Top Keywords

acidification eutrophication
12
lakes subjected
12
lakes
9
experimental lakes
8
lakes area
8
area iisd-ela
8
influence accumulation
8
accumulation
6
impacts whole-lake
4
acidification
4

Similar Publications

Biopolymer based electrolytes can overcome current performance limitations of lithium-ion batteries (LIBs). Biopolymers enable electrolytes with high ionic conductivities and wide electrochemical stability windows. While the biobased character of natural materials is claimed as an inherent advantage in meeting current environmental sustainability challenges, further research is required to quantify and compare their environmental impacts as electrolytes.

View Article and Find Full Text PDF

The extracellular matrix (ECM) is a network of proteins and other molecules that encase and support cells and tissues in the body. As clinical and biotechnological uses of ECM are expanding, it is essential to assess the environmental impact associated with its production. Due to high levels of customization, various laboratories employ distinct methods; therefore, this study evaluates three common protocols.

View Article and Find Full Text PDF

Taking a sewage treatment plant in Suzhou City, Jiangsu Province, as an example, the greenhouse gas (GHG) emissions generated in the sewage treatment system were calculated using the carbon balance method and the emission factor method. The environmental impacts and economic aspects of different treatment units in wastewater treatment plants were analyzed using life cycle assessment, cost-benefit analysis, and data envelopment analysis models, and emission reduction pathways were proposed. The results indicated that the total GHG emissions (in terms of CO) from a certain municipal wastewater treatment plant in Suzhou were 6 653.

View Article and Find Full Text PDF
Article Synopsis
  • The leather fashion industry is pressured to adopt eco-friendly tanning methods due to the harmful effects of chromium-intensive manufacturing, but there's limited research on the environmental impacts of new tanning processes.
  • This study compares the traditional chromium tanning process with a novel metal-free tanning technology using synthetic tannins, revealing the metal-free method significantly reduces various environmental impacts, including human toxicity and acidification, by up to 56%.
  • Life cycle assessments indicated that the new tanning method has 18.4% lower overall environmental impacts, while cattle breeding was identified as a major contributor to negative effects; alternative scenarios explored the potential of solar energy to further mitigate these impacts.
View Article and Find Full Text PDF

Shellfish and seaweed, the primary mariculture species in China, generate significant amounts of dissolved organic matter (DOM) during growth. This production significantly influences the carbon cycle in the marine environment. In the present study, we evaluated the DOM changes during growth in both seawater and sediments in Nan'ao, Guangdong Province, southern China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!