Acidification and eutrophication are common limnological stressors impacting many water bodies across the globe. While the negative impacts of these stressors on limnetic communities are generally known, their influence on the accumulation of specific sediment constituents, such as metals, remains unclear. Benefitting from past research and long-term monitoring, lakes at the International Institute for Sustainable Development - Experimental Lakes Area (IISD-ELA) in northwestern Ontario, Canada are invaluable to understand the extent to which these two common lake stressors can influence the accumulation of metals in lacustrine sediment. To address these issues, sediment cores were retrieved from six lakes: four were subjected to past experimental acidification or eutrophication and two were reference lakes. Focusing on elemental lead (Pb), a metal known to have accumulated in lake sediments worldwide and generally exhibiting a relatively small fraction of terrigenous input, we assessed the hypothesis that greater accumulation of Pb would be observed in lakes subjected to eutrophication, while the reverse was expected for lakes subjected to acidification experiments. Our analyses support this hypothesis, whereby relatively low enrichment was recorded in sediments deposited in the acidified lake during the manipulation era. On the other hand, eutrophied lakes demonstrated a strong enrichment in Pb during experimental manipulation. When investigating the mechanisms behind these divergent responses, we found epilimnetic dissolved organic carbon (DOC) and conductivity were associated with a relative increase in Pb accumulation in sediments. Acidic pH is also expected to mediate these responses by decreasing epilimnetic DOC concentrations leading to reduced Pb accumulation in the sediment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2022.120829 | DOI Listing |
Adv Mater
January 2025
Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, Faculty of Engineering in Bilbao. University of the Basque Country (UPV/EHU), Bilbao, 48013, Spain.
Biopolymer based electrolytes can overcome current performance limitations of lithium-ion batteries (LIBs). Biopolymers enable electrolytes with high ionic conductivities and wide electrochemical stability windows. While the biobased character of natural materials is claimed as an inherent advantage in meeting current environmental sustainability challenges, further research is required to quantify and compare their environmental impacts as electrolytes.
View Article and Find Full Text PDFFEBS J
January 2025
Institute of Biomaterials, The First Affiliated Hospital of Ningbo university, China.
The extracellular matrix (ECM) is a network of proteins and other molecules that encase and support cells and tissues in the body. As clinical and biotechnological uses of ECM are expanding, it is essential to assess the environmental impact associated with its production. Due to high levels of customization, various laboratories employ distinct methods; therefore, this study evaluates three common protocols.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China.
Taking a sewage treatment plant in Suzhou City, Jiangsu Province, as an example, the greenhouse gas (GHG) emissions generated in the sewage treatment system were calculated using the carbon balance method and the emission factor method. The environmental impacts and economic aspects of different treatment units in wastewater treatment plants were analyzed using life cycle assessment, cost-benefit analysis, and data envelopment analysis models, and emission reduction pathways were proposed. The results indicated that the total GHG emissions (in terms of CO) from a certain municipal wastewater treatment plant in Suzhou were 6 653.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Sant'Anna School of Advanced Studies, Institute of Management, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy.
Mar Environ Res
December 2024
Institute of Hydrobiology, Jinan University/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, 510632, China. Electronic address:
Shellfish and seaweed, the primary mariculture species in China, generate significant amounts of dissolved organic matter (DOM) during growth. This production significantly influences the carbon cycle in the marine environment. In the present study, we evaluated the DOM changes during growth in both seawater and sediments in Nan'ao, Guangdong Province, southern China.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!