Efficient photocatalytic hydrogen peroxide production induced by the strong internal electric field of all-organic S-scheme heterojunction.

J Colloid Interface Sci

Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China. Electronic address:

Published: March 2023

AI Article Synopsis

  • - Researchers developed an all-organic S-scheme heterojunction by recrystallizing perylene-3, 4, 9, 10-tetracarboxylic diimide (PDINH) on porous carbon nitride (PCN) to enhance solar energy conversion for producing hydrogen peroxide.
  • - The porous design of the photocatalyst improved mass transfer, light absorption, and surface area, facilitating more effective photocatalytic reactions.
  • - The new heterojunction achieved a hydrogen peroxide production rate of 922.4 μmol gh, significantly outperforming both PCN and PDINH alone, highlighting its potential for environmental applications. !*

Article Abstract

Light-driven reaction of oxygen and water to hydrogen peroxide (HO) is an environmental protection method, which can convert solar energy into green products. In this work, perylene-3, 4, 9, 10-tetracarboxylic diimide (PDINH) could be recrystallized in situ on the surface of porous carbon nitride (PCN), to obtain an all-organic S-scheme heterojunction (PDINH/PCN). The design of the hierarchical porous photocatalyst improved the mass transfer, enhanced the light absorption and increased specific surface area. Moreover, the construction of the S-scheme heterojunction at the interface of PDINH and PCN exhibited suitable band, which facilitated the separation and transfer of carriers. The HO production rate was up to 922.4 μmol gh, which was 2.6 and 53.3 times higher than that of PCN and PDINH. Therefore, the all-organic S-scheme heterojunction provides an insight for improving the photocatalytic HO production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2022.11.146DOI Listing

Publication Analysis

Top Keywords

s-scheme heterojunction
16
all-organic s-scheme
12
hydrogen peroxide
8
efficient photocatalytic
4
photocatalytic hydrogen
4
peroxide production
4
production induced
4
induced strong
4
strong internal
4
internal electric
4

Similar Publications

Mechanism, Performance, and Application of g-CN-Coupled TiO as an S-Scheme Heterojunction Photocatalyst for the Abatement of Gaseous Benzene.

ACS Appl Mater Interfaces

January 2025

Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-Gu, Seoul 04763, Republic of Korea.

In this research, S-scheme heterojunction photocatalysts are prepared through the hybridization of nitrogen-rich g-CN with TiO (coded as TCN-(): as the weight ratio of TiO:g-CN). The photocatalytic potential of TCN-() is evaluated against benzene (1-5 ppm) across varying humidity levels using a dynamic flow packed-bed photocatalytic reactor. Among the prepared composites, TCN-(10) exhibits the highest synergy between g-CN and TiO at "" ratio of 10%, showing superior best benzene degradation performance (e.

View Article and Find Full Text PDF

Anion vacancy engineered Cu/ZnInS-V/TiO-V S-scheme heterojunction for enhancing photocatalytic overall water splitting.

J Colloid Interface Sci

January 2025

National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming 650091 China; Southwest United Graduate School, Kunming 650091 China. Electronic address:

Heterojunction materials for photocatalytic overall water splitting (POWS) become popular in recent times. However, even in the superior S-scheme heterojunction, the two semiconductor materials still do not have an efficient activity to separate and migrate photogenerated carriers. To further improve the charge separation and enhance the activity of POWS, a novel S-scheme heterojunction photocatalyst, Cu/ZnInS-V/TiO-V, was synthesized using solvothermal and calcination methods.

View Article and Find Full Text PDF

A Simple One-Pot Method for the Synthesis of BiFeO/BiFeO Heterojunction for High-Performance Photocatalytic Degradation Applications.

Int J Mol Sci

December 2024

Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.

This study presents a facile one-pot synthesis method to fabricate BiFeO-BiFeO-BiO heterojunction photocatalysts with controllable compositions and pure phases. Three different binary heterojunctions (BiFeO/BiFeO, BiFeO/BiO, and BiFeO/BiO) and a ternary BiFeO/BiFeO/BiO heterojunction were formed, all exhibiting significantly enhanced photocatalytic performance for the degradation of methylene blue (MB) and phenol under visible light irradiation, outperforming the individual compositions. Notably, the BiFeO/BiFeO heterojunction achieved the highest degradation efficiency (93.

View Article and Find Full Text PDF

We have developed a novel S-scheme mechanism to expand the photoresponse range of BiSiO. This study reports the successful creation of a CN/BS heterojunction photocatalyst, which is composed of g-CN and BiSiO. The synthesis was achieved through a simple two-step procedure, involving hydrothermal treatment and subsequent calcination.

View Article and Find Full Text PDF

Designing and optimizing photocatalysts to maximize the use of sunlight and achieve fast charge transport remains a goal of photocatalysis technology. Herein, a full-spectrum-response BiOBr:Er@BiO core-shell S-scheme heterojunction is designed with [Bi─O] tetrahedral sharing using upconversion (UC) functionality, photothermal effects, and interfacial engineering. The UC function of Er and plasmon resonance effect of BiO greatly improves the utilization of sunlight.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!