Multisite machine-learning neuroimaging studies, such as those conducted by the ENIGMA Consortium, need to remove the differences between sites to avoid effects of the site (EoS) that may prevent or fraudulently help the creation of prediction models, leading to impoverished or inflated prediction accuracy. Unfortunately, we have shown earlier that current Methods Aiming to Remove the EoS (MAREoS, e.g., ComBat) cannot remove complex EoS (e.g., including interactions between regions). And complex EoS may bias the accuracy. To overcome this hurdle, groups worldwide are developing novel MAREoS. However, we cannot assess their effectiveness because EoS may either inflate or shrink the accuracy, and MAREoS may both remove the EoS and degrade the data. In this work, we propose a strategy to measure the effectiveness of a MAREoS in removing different types of EoS. FOR MAREOS DEVELOPERS, we provide two multisite MRI datasets with only simple true effects (i.e., detectable by most machine-learning algorithms) and two with only simple EoS (i.e., removable by most MAREoS). First, they should use these datasets to fit machine-learning algorithms after applying the MAREoS. Second, they should use the formulas we provide to calculate the relative accuracy change associated with the MAREoS in each dataset and derive an EoS-removal effectiveness statistic. We also offer similar datasets and formulas for complex true effects and EoS that include first-order interactions. FOR MACHINE-LEARNING RESEARCHERS, we provide an extendable benchmark website to show: a) the types of EoS they should remove for each given machine-learning algorithm and b) the effectiveness of each MAREoS for removing each type of EoS. Relevantly, a MAREoS only able to remove the simple EoS may suffice for simple machine-learning algorithms, whereas more complex algorithms need a MAREoS that can remove more complex EoS. For instance, ComBat removes all simple EoS as needed for predictions based on simple lasso algorithms, but it leaves residual complex EoS that may bias the predictions based on standard support vector machine algorithms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2022.119800 | DOI Listing |
Curr Rev Musculoskelet Med
December 2024
Wake Forest School of Medicine, Department of Orthopaedic Surgery, 1 Medical Center Blvd, Winston Salem, NC, 27103, USA.
Purpose Of Review: Adolescent idiopathic scoliosis (AIS) is a disabling spinal pathology, with a significant morbidity if left untreated. This review investigates the recent advances in the diagnosis and management of AIS.
Recent Findings: Low radiation techniques have become a paramount focus in the management of patient's with AIS.
Clin Mol Hepatol
December 2024
Department of Clinical Laboratory, State key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
Background: Anti-mitochondrial M2 antibody (AMA-M2) is a specific marker for primary biliary cholangitis (PBC) and it could be also presented in non-PBC individuals.
Methods: A total of 72173 Chinese health check-up individuals tested AMA-M2, of which non-PBC AMA-M2 positive individuals were performed follow-up. Baseline data of both clinical characteristics and laboratory examinations were collected in all AMA-M2-positive individuals.
Angew Chem Int Ed Engl
December 2024
Saarland University, Coordination Chemistry, Campus C 4.1, 66123, Saarbrücken, GERMANY.
We report hitherto elusive side-on η2-bonded palladium(0) carbonyl (anthraquinone, benzaldehyde) and arene (benzene, hexa-fluorobenzene) palladium(0) complexes and present the catalytic hydrodefluorination of hexafluorobenzene by cyclohexene. The comparison with respective cyclohexene, pyridine and tetrahydrofuran complexes reveals that the experimental ligand binding strengths follow the order THF < C6H6 < C6F6 < cyclohexene < pyridine < benzaldehyde < anthraquinone. To understand this surprising order, the complexes' electronic structures were elucidated by nuclear magnetic resonance (NMR), single crystal X-Ray diffraction (sc-XRD), ultraviolet/visible (UV/Vis) electronic absorption, infrared (IR) vibrational, Pd L3-edge X-ray absorption (XAS), and X-ray photoelectron (XP) spectroscopic techniques, complemented by Density Functional Theory (DFT) calculations including energy decomposition (EDA-NOCV) and effective oxidation state (EOS) analyses.
View Article and Find Full Text PDFInt J Environ Health Res
December 2024
National Agricultural Research Institute of Tunisia (INRAT), Laboratory of Biotechnology Applied to Agriculture LR11INRAT06, University of Carthage, Tunis, Tunisia.
Recently essential oils (EOs) encapsulation is experiencing growing applications in agricultural and agri-food sector. Encapsulation is reported as safe environmental technology leading to a reduction of conventional insecticides use. This study concerns the assessment of fumigant toxicity and persistence of EO encapsulated in two cyclodextrins β-CD and HP-β-CD against larvae of the date moth, The retention capacity, encapsulation efficacy, loading capacity and release behavior of the two inclusion complexes were investigated.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania.
Natural compounds from plants represent suitable options to replace synthetic biocides when employed against microorganisms in various applications. Essential oils (EOs) have attracted increased interest due to their biocompatible and rather innocuous nature, and complex biological activity (fungicide, biocide and anti-inflammatory, antioxidant, immunomodulatory action, etc.).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!