To evaluate the protective effect of viral hemorrhagic septicemia virus genotype IVa (VHSV IVa) genome-based single-cycle viruses against VHSV genotype Ia (VHSV Ia) and infectious hematopoietic necrosis virus (IHNV) in rainbow trout, three kinds of single-cycle VHSVs were rescued using reverse genetic technology: i) rVHSV-IaGΔTM containing the transmembrane and cytoplasmic region-deleted G protein (GΔTM) of VHSV Ia instead of VHSV IVa full G gene ORF and having VHSV IVa G proteins on the envelope; ii) rVHSV-IaGΔTM containing VHSV Ia GΔTM instead of VHSV IVa full G gene ORF and having VHSV Ia G proteins on the envelope; iii) rVHSV-IaGΔTM-ihnvGΔTM containing not only VHSV Ia GΔTM instead of full G gene but also IHNV GΔTM instead of NV gene and having VHSV IVa G proteins on the envelope. Rainbow trout immunized with rVHSV-IaGΔTM and rVHSV-IaGΔTM showed significantly higher serum antibody titers against both VHSV Ia and VHSV IVa, and showed no mortality against VHSV Ia infection, while fish in the control groups showed 100% mortalities. Fish immunized with rVHSV-IaGΔTM-ihnvGΔTM showed significantly higher serum antibody titers against VHSV IVa, VHSV Ia, and IHNV compared to fish in the control group. Immunization with rVHSV-IaGΔTM-ihnvGΔTM induced significantly higher protection against not only VHSV Ia but also IHNV. These results suggest that the present single-cycle rVHSV-based system can be used as a platform to produce combined vaccines that can protect fish from multiple pathogenic species. However, the mechanism of the high protection against IHNV despite comparatively low antibody titer remains to be investigated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fsi.2022.108476 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!