Neutrophilic granulocyte-derived B-cell activating factor supports B cells in skin lesions in hidradenitis suppurativa.

J Allergy Clin Immunol

Psoriasis Research and Treatment Centre, Charité-Universitätsmedizin Berlin, Berlin, Germany; Interdisciplinary Group Molecular Immunopathology, Dermatology/Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Inflammation and Regeneration of the Skin, BIH Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany. Electronic address:

Published: April 2023

Background: Hidradenitis suppurativa (HS) is a chronic inflammatory disease characterized by painful inflamed nodules, abscesses, and pus-draining tunnels appearing in axillary, inguinal, and perianal skin areas. HS lesions contain various types of immigrated immune cells.

Objective: This study aimed to characterize mediators that support lesional B/plasma cell persistence in HS.

Methods: Skin samples from several cohorts of HS patients and control cohorts were assessed by mRNA sequencing, quantitative PCR on reverse-transcribed RNA, flow cytometry, and immunohistofluorescence. Blood plasma and cultured skin biopsy samples, keratinocytes, dermal fibroblasts, neutrophilic granulocytes (neutrophils), monocytes, and B cells were analyzed. Complex systems biology approaches were used to evaluate bulk and single-cell RNA sequencing data.

Results: Proportions of B/plasma cells, neutrophils, CD8 T cells, and M and M macrophages were elevated in HS lesions compared to skin of healthy and perilesional intertriginous areas. There was an association between B/plasma cells, neutrophils, and B-cell activating factor (BAFF, aka TNFSF13B). BAFF was abundant in HS lesions, particularly in nodules and abscesses. Among the cell types present in HS lesions, myeloid cells were the main BAFF producers. Mechanistically, granulocyte colony-stimulating factor in the presence of bacterial products was the major stimulus for neutrophils' BAFF secretion. Lesional upregulation of BAFF receptors was attributed to B cells (TNFRSF13C/BAFFR and TNFRSF13B/TACI) and plasma cells (TNFRSF17/BCMA). Characterization of the lesional BAFF pathway revealed molecules involved in migration/adhesion (eg, CXCR4, CD37, CD53, SELL), proliferation/survival (eg, BST2), activation (eg, KLF2, PRKCB), and reactive oxygen species production (eg, NCF1, CYBC1) of B/plasma cells.

Conclusion: Neutrophil-derived BAFF supports B/plasma cell persistence and function in HS lesions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jaci.2022.10.034DOI Listing

Publication Analysis

Top Keywords

b-cell activating
8
activating factor
8
cells
8
hidradenitis suppurativa
8
nodules abscesses
8
b/plasma cell
8
cell persistence
8
b/plasma cells
8
cells neutrophils
8
baff
7

Similar Publications

We aimed to explore the role of Amino acid metabolism (AAM) and identify biomarkers for prognosis management and treatment of lung adenocarcinoma. Differentially expressed genes (DEGs) associated with AAM in lung adenocarcinoma were selected from public databases. Samples were clustered into varying subtypes using ConsensusClusterPlus based on gene levels.

View Article and Find Full Text PDF

Purpose: Activating T cell costimulatory receptors is a promising approach for cancer immunotherapy. In preclinical work, adding an OX40 agonist to in situ vaccination (ISV) with SD101, a TLR9 agonist, was curative in a mouse model of lymphoma. We sought to test this combination in a Phase I clinical trial for patients with low-grade B cell lymphoma.

View Article and Find Full Text PDF

The increasing use of immune suppressive monoclonal antibodies in the treatment of organ transplant recipients and patients with oncologic, neurological, and autoimmune diseases can lead to serious morbidity and mortality from the reactivation of viral agents that persist in humans. The squirrel monkey polyomaviruses are naturally found in Bolivian squirrel monkeys (SQM) and may be a useful model for the study of polyomavirus-associated pathogenesis and experimental treatment and prevention strategies. Two diverse groups of squirrel monkeys were given, a single dose of an anti-B cell antibody (rituximab) resulting in complete depletion of B cells (CD20+), while an anti-CD8 monoclonal antibody (7 pt-3F9) resulted in a transient depletion of CD8+ lymphocytes compared with control animals (group with no infusion with either of the monoclonal antibodies).

View Article and Find Full Text PDF

B cells and tertiary lymphoid structures in tumors: immunity cycle, clinical impact, and therapeutic applications.

Theranostics

January 2025

Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China.

Tumorigenesis involves a multifaceted and heterogeneous interplay characterized by perturbations in individual immune surveillance. Tumor-infiltrating lymphocytes, as orchestrators of adaptive immune responses, constitute the principal component of tumor immunity. Over the past decade, the functions of tumor-specific T cells have been extensively elucidated, whereas current understanding and research regarding intratumoral B cells remain inadequate and underexplored.

View Article and Find Full Text PDF

Nasopharyngeal carcinoma (NPC) refers to a cancerous tumor that develops in the upper and side walls of the nasopharyngeal cavity. Typically, individuals are often diagnosed with the disease when it has already progressed significantly, and those with advanced NPC tend to have an unfavorable outlook in terms of response rate to targeted treatments and overall clinical survival. Various molecular mechanisms, including Myeloid-derived suppressor cells and factors like PD-L1, have been explored to enhance the outcome of NPC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!