Tannic Acid-Assisted Immobilization of Copper(II), Carboxybetaine, and Argatroban on Poly(ethylene terephthalate) Mats for Synergistic Improvement of Blood Compatibility and Endothelialization.

Langmuir

Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.

Published: December 2022

Due to thrombosis and intimal hyperplasia, small-diameter vascular grafts have poor long-term patency. A combination strategy based on nitric oxide (NO) and anticoagulants has the potential to address those issues. In this study, poly(ethylene terephthalate) (PET) mats were prepared by electrospinning and coated with tannic acid (TA)/copper ion complexes. The chelated copper ions endowed the mats with sustained NO generation by catalytic decomposition of endogenous S-nitrosothiol. Subsequently, zwitterionic carboxybetaine acrylate (CBA) and argatroban (AG) were immobilized on the mats. The introduced AG and CBA had synergistic effects on the improvement of blood compatibility, resulting in reduced platelet adhesion and prolonged blood clotting time. The biocomposite mats selectively promoted the proliferation and migration of human umbilical vein endothelial cells while inhibiting the proliferation and migration of human umbilical arterial smooth muscle cells under physiological conditions. In addition, the prepared mats exhibited antibacterial activity against and . Collectively, the prepared mats hold great promise as artificial small-diameter vascular grafts.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.2c02508DOI Listing

Publication Analysis

Top Keywords

polyethylene terephthalate
8
improvement blood
8
blood compatibility
8
small-diameter vascular
8
vascular grafts
8
proliferation migration
8
migration human
8
human umbilical
8
prepared mats
8
mats
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!