Nanoplastics (NPs) have been successively detected in different environmental matrixes and have aroused great concern worldwide. However, the fate of NPs in real environments such as seawater remains unclear, impeding their environmental risk assessment. Herein, multiple techniques were employed to monitor the particle number concentration, size, and morphology evolution of polystyrene NPs in seawater under simulated sunlight over a time course of 29 days. Aggregation was found to be a continuous process that occurred constantly and was markedly promoted by light irradiation. Moreover, the occurrence of NP swelling, fragmentation, and polymer leaching was evidenced by both transmission electron microscopy and scanning electron microscopy techniques. The statistical results of different transformation types suggested that swelling induces fragmentation and polymer leakage and that light irradiation plays a positive but not decisive role in this transformation. The observation of fragmentation and polymer leakage of poly(methyl methacrylate) and poly(vinyl chloride) NPs suggests that these transformation processes are general for NPs of different polymer types. Facilitated by the increase of surface functional groups, the ions in seawater could penetrate into NPs and then stretch the polymer structure, leading to the swelling phenomenon and other transformations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.2c05669DOI Listing

Publication Analysis

Top Keywords

fragmentation polymer
16
polymer leakage
12
light irradiation
8
electron microscopy
8
polymer
6
nps
6
swelling-induced fragmentation
4
leakage nanoplastics
4
seawater
4
nanoplastics seawater
4

Similar Publications

Microplastics (MPs) are ubiquitous and are increasing globally, but there is limited information available on their presence in freshwater ecosystems. This research work aims to investigate the abundance, sinking behavior, and risk assessment of MPs in the freshwater River Basantar, Jammu & Kashmir, India. Microplastic abundance in sediments was recorded in the range of 1-6 items g, with a mean abundance of 3 ± 1.

View Article and Find Full Text PDF

Microplastic (MP) pollution is an emerging environmental problem worldwide and has caused widespread concern both in terrestrial and aquatic ecosystems due to their potential impacts on the human health, and health of aquatic organisms and the environment. Little is known about the exposure of top marine predators to MP contamination (debris 0.1μm - <5mm, also called MPs).

View Article and Find Full Text PDF

A novel approach to developing lateral flow assays (LFAs) for the detection of CYFRA 21-1 (cytokeratin 19 fragment, a molecular biomarker for epithelial-origin cancers) is proposed. Magnetic bioconjugates (MBCs) were employed in combination with advanced optical and magnetic tools to optimize assay conditions. The approach integrates such techniques as label-free spectral-phase interferometry, colorimetric detection, and ultrasensitive magnetometry using the magnetic particle quantification (MPQ) technique.

View Article and Find Full Text PDF

Objectives: Tinea capitis remains a common fungal infection in children worldwide. Species identification is critical for determining the source of infection and reducing transmission. In conventional methods, macro- and microscopic analysis is time-consuming and results in slow fungal growth or low specificity.

View Article and Find Full Text PDF

Gold nanoparticles (AuNPs) present with unique physicochemical features and potential for functionalization as anticancer agents. Three-dimensional spheroid models can be used to afford greater tissue representation due to their heterogeneous phenotype and complex molecular architecture. This study developed an A549 alveolar carcinoma spheroid model for cytotoxicity assessment and mechanistic evaluation of functionalized AuNPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!