Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Semipinacol rearrangement is a special type of Wagner-Meerwein rearrangement that involves carbocation 1,2-rearrangement to provide carbonyl compounds with an α-quaternary carbon center. It has been strategically used for natural product synthesis and construction of highly congested quaternary carbons. Herein, we report a safe and green protocol that uses oxone/halide and Fenton bromide to achieve halogenative semipinacol rearrangement. The key feature of this method is the green generation of reactive halogenating species from oxidation of halide with oxone or HO, which produces a nontoxic byproduct (potassium sulfate or water). Easy operation (insensitive to air and moisture) at room temperature without using special equipment adds additional advantage over previous methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.2c02496 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!