A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Closing the life-cycle of normative modeling using federated hierarchical Bayesian regression. | LitMetric

AI Article Synopsis

  • Clinical neuroimaging data has significantly increased in the last decade, enabling extensive research into variations within clinical cohorts of brain disorders.
  • Normative modeling offers a statistical approach to understand this variability, but it's complicated by privacy concerns and differences in how images are captured.
  • A new federated probabilistic framework using hierarchical Bayesian regression (HBR) allows for more accurate normative modeling across large, decentralized neuroimaging datasets, improving the ability to screen for biological deviations in individuals with complex conditions like mental disorders.

Article Abstract

Clinical neuroimaging data availability has grown substantially in the last decade, providing the potential for studying heterogeneity in clinical cohorts on a previously unprecedented scale. Normative modeling is an emerging statistical tool for dissecting heterogeneity in complex brain disorders. However, its application remains technically challenging due to medical data privacy issues and difficulties in dealing with nuisance variation, such as the variability in the image acquisition process. Here, we approach the problem of estimating a reference normative model across a massive population using a massive multi-center neuroimaging dataset. To this end, we introduce a federated probabilistic framework using hierarchical Bayesian regression (HBR) to complete the life-cycle of normative modeling. The proposed model provides the possibilities to learn, update, and adapt the model parameters on decentralized neuroimaging data. Our experimental results confirm the superiority of HBR in deriving more accurate normative ranges on large multi-site neuroimaging datasets compared to the current standard methods. In addition, our approach provides the possibility to recalibrate and reuse the learned model on local datasets and even on datasets with very small sample sizes. The proposed method will facilitate applications of normative modeling as a medical tool for screening the biological deviations in individuals affected by complex illnesses such as mental disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9731431PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0278776PLOS

Publication Analysis

Top Keywords

normative modeling
16
life-cycle normative
8
hierarchical bayesian
8
bayesian regression
8
neuroimaging data
8
normative
6
closing life-cycle
4
modeling
4
modeling federated
4
federated hierarchical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!