Background And Purpose: Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a challenging clinical syndrome that leads to various respiratory sequelae and even high mortality in patients with severe disease. The novel pharmacological strategies and therapeutic drugs are urgently needed. Natural products have played a fundamental role and provided an abundant pool in drug discovery.
Experimental Approach: A compound library containing 160 natural products was used to screen potential anti-inflammatory compounds. Mice with LPS-induced ALI was then used to verify the preventive and therapeutic effects of the selected compounds.
Key Results: Licochalcone A was discovered from the anti-inflammatory screening of natural products in macrophages. A qPCR array validated the inflammation-regulatory effects of licochalcone A and indicated that the potential targets of licochalcone A may be the upstream proteins in LPS pro-inflammatory signalling. Further studies showed that licochalcone A directly binds to myeloid differentiation factor 2 (MD2), an assistant protein of toll-like receptor 4 (TLR4), to block both LPS-induced TRIF- and MYD88-dependent pathways. LEU61 and PHE151 in MD2 protein are the two key residues that contribute to the binding of MD2 to licochalcone A. In vivo, licochalcone A treatment alleviated ALI in LPS-challenged mice through significantly reducing immunocyte infiltration, suppressing activation of TLR4 pathway and inflammatory cytokine induction.
Conclusion And Implications: In summary, our study identified MD2 as a direct target of licochalcone A for its anti-inflammatory activity and suggested that licochalcone A might serve as a novel MD2 inhibitor and a potential drug for developing ALI/ARDS therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/bph.15999 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA 92697.
Loss-of-function sequence variants in , which encodes the voltage-gated potassium channel Kv1.1, cause Episodic Ataxia Type 1 (EA1) and epilepsy. Due to a paucity of drugs that directly rescue mutant Kv1.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138.
C-Terminal cyclic imides are posttranslational modifications that can arise from spontaneous intramolecular cleavage of asparagine or glutamine residues resulting in a form of irreversible protein damage. These protein damage events are recognized and removed by the E3 ligase substrate adapter cereblon (CRBN), indicating that these aging-related modifications may require cellular quality control mechanisms to prevent deleterious effects. However, the factors that determine protein or peptide susceptibility to C-terminal cyclic imide formation or their effect on protein stability have not been explored in detail.
View Article and Find Full Text PDFPLoS One
January 2025
Foot and Mouth Disease Department, National Veterinary Research Institute, Vom, Plateau State, Nigeria.
The global public health risk posed by Salmonella Kentucky (S. Kentucky) is rising, particularly due to the dissemination of antimicrobial resistance genes in human and animal populations. This serovar, widespread in Africa, has emerged as a notable cause of non-typhoidal gastroenteritis in humans.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
Micro/nanoscale 3D bioelectrodes gain increasing interest for electrophysiological recording of electroactive cells. Although 3D printing has shown promise to flexibly fabricate 3D bioelectronics compared with conventional microfabrication, relatively-low resolution limits the printed bioelectrode for high-quality signal monitoring. Here, a novel multi-material electrohydrodynamic printing (EHDP) strategy is proposed to fabricate bioelectronics with sub-microscale 3D gold pillars for in vitro electrophysiological recordings.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Opthalmology, Chongqing Hechuan District People's Hospital, Chongqing, China.
Background: Bushen-Huoxue-Mingmu-Formula (MMF) has achieved definite clinical efficacy. However, its mechanism is still unclear.
Objective: Investigating the molecular mechanism of MMF to protect retinal ganglion cells (RGCs).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!