PINK1-Mediated Mitophagy Promotes Oxidative Phosphorylation and Redox Homeostasis to Induce Drug-Tolerant Persister Cancer Cells.

Cancer Res

Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P. R. China.

Published: February 2023

Unlabelled: The drug-tolerant persister (DTP) state enables cancer cells to evade cytotoxic stress from anticancer therapy. However, the mechanisms governing DTP generation remain poorly understood. Here, we observed that lung adenocarcinoma (LUAD) cells and organoids entered a quiescent DTP state to survive MAPK inhibitor treatment. DTP cells following MAPK inhibition underwent a metabolic switch from glycolysis to oxidative phosphorylation (OXPHOS). PTEN-induced kinase 1 (PINK1), a serine/threonine kinase that initiates mitophagy, was upregulated to maintain mitochondrial homeostasis during DTP generation. PINK1-mediated mitophagy supported DTP cell survival and contributed to poor prognosis. Mechanistically, MAPK pathway inhibition resulted in MYC-dependent transcriptional upregulation of PINK1, leading to mitophagy activation. Mitophagy inhibition using either clinically applicable chloroquine or depletion of PINK1 eradicated drug tolerance and allowed complete response to MAPK inhibitors. This study uncovers PINK1-mediated mitophagy as a novel tumor protective mechanism for DTP generation, providing a therapeutic opportunity to eradicate DTP and achieve complete responses.

Significance: DTP cancer cells that cause relapse after anticancer therapy critically depend on PINK1-mediated mitophagy and metabolic reprogramming, providing a therapeutic opportunity to eradicate persister cells to prolong treatment efficacy.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-22-2370DOI Listing

Publication Analysis

Top Keywords

pink1-mediated mitophagy
16
cancer cells
12
dtp generation
12
dtp
9
oxidative phosphorylation
8
drug-tolerant persister
8
dtp state
8
anticancer therapy
8
providing therapeutic
8
therapeutic opportunity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!