Radiological and especially nuclear accidents and incidents pose a threat to populations. In such events, gene expression (GE) analysis of a set of 4 genes (FDXR, DDB2, POU2AF1, WNT3) is an emerging approach for early and high-throughput prediction of the later manifesting severity degrees of the hematological acute radiation syndrome (H-ARS). Validation of this gene set on radiation victims is difficult since these events are rare. However, chemotherapy (CTX) is widely used e.g., breast cancer patient treatment and pathomechanisms, as well as blood cell count changes are comparable among both exposure types. We wondered whether GE changes are similarly deregulated after CTX, which would be interpreted as a confirmation of our already identified gene set for H-ARS prediction after irradiation. We examined radiation-induced differential GE (DGE) of our gene set as a positive control using in vitro whole blood samples from ten healthy donors (6 females, 4 males, aged: 24-40 years). Blood was incubated in vitro for 8 h after X irradiation with 0 and 4 Gy (1 Gy/min). These data were compared with DGE measured in vivo in blood samples of 10 breast tumor CTX patients (10 females, aged: 39-71 years) before and 4 days after administration of cyclophosphamide and epirubicin. RNA was isolated, reverse transcribed and quantitative real-time polymerase-chain-reaction (qRT-PCR) was performed to assess DGE of FDXR, DDB2, POU2AF1 and WNT3 relative to the unexposed samples using TaqMan assays. After X irradiation, we found a significant upregulation (irrespective of sex) with mean fold changes of 21 (P < 0.001) and 7 (P < 0.001) for FDXR and DDB2 and a significant down-regulation with mean fold changes of 2.5 (P < 0.001) and 2 (P = 0.005) for POU2AF1 and WNT3, respectively. After CTX, a similar pattern was observed, although mean fold changes of up-regulated FDXR (6-fold, P < 0.001) and DDB2 (3-fold, P < 0.001) as well as down-regulated POU2AF1 (1.2-fold, P = 0.270) and WNT3 (1.3-fold, P = 0.069) appeared lower corresponding to less altered blood cell count changes observed after CTX compared to historic radiation exposure data. However, a subpopulation of CTX patients (n = 6) showed on average a significant downregulation of POU2AF1 (1.8-fold, P = 0.04) and WNT3 (2.1-fold, P = 0.008). In summary, the pattern of up-regulated GE changes observed in all CTX patients and down-regulated GE changes observed in a subgroup of CTX patients appeared comparable with an already identified gene set predictive for the radiation-induced H-ARS. This underlines the significance of in vivo GE measurements in CTX patients, employed as a surrogate model to further validate already identified radiation-induced GE changes predictive for the H-ARS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1667/RADE-22-00068.1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!