The aim of this experiment was to assess the effect of different storage temperatures on the texture quality, phenolic profile, and antioxidant capacity of a grape. Fresh grapes were stored at 4 and 25 °C for nine days and sampled on alternate days. The hardness, total phenolics, total flavanones, total flavanols, total anthocyanin content, antioxidant activity, differential metabolite screening, and key gene expression were evaluated. In addition, four phenolic compounds were screened out as differential metabolites in response to storage temperature by OPLS-DA analysis. The results showed that the fruit firmness was better maintained in low-temperature storage and the storage life was longer than that at 25 °C. During the whole storage process, the contents of phenolics, flavanones, flavanols, and anthocyanins all showed an increasing trend first and then decreased regardless of what temperature. Since the antioxidant capacity of a grape was positively correlated with the contents of total phenols and total flavonoids, the same trend was also shown. However, the grape's phenolic compound content and antioxidant activity were higher at 25 °C than at 4 °C. Furthermore, through qualitative and quantitative analysis of 16 monomeric phenols, this study selected catechin, 1--vanilloyl-β-d-glucose, -coumaric acid 4-glucoside, and resveratrol-3--glucoside as the main differentially expressed metabolites at the two temperatures. In conclusion, for a short shelf life or immediate consumption, keeping grapes at room temperature is more beneficial to obtain high antioxidants. However, if the goal is to prolong the storage period of the fruit, keeping the fruit at 4 °C is recommended.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.2c06573DOI Listing

Publication Analysis

Top Keywords

low-temperature storage
8
antioxidant capacity
8
capacity grape
8
content antioxidant
8
antioxidant activity
8
storage
7
total
6
°c
5
changes polyphenolic
4
polyphenolic compounds
4

Similar Publications

The development of stable biopharmaceutical formulations, such as monoclonal antibodies, poses a great challenge in the pharmaceutical industry. This study investigated the stabilizing effect of 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) in liquid and solid formulations of infliximab during processing and storage. The solid formulation was produced by a scaled-up high-speed electrospinning method, resulting in a product suitable for reconstitution with excellent dissolution properties.

View Article and Find Full Text PDF

Promising mass spectrometry imaging: exploring microscale insights in food.

Crit Rev Food Sci Nutr

January 2025

State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China.

This review focused on mass spectrometry imaging (MSI), a powerful tool in food analysis, covering its ion source schemes and procedures and their applications in food quality, safety, and nutrition to provide detailed insights into these aspects. The review presented a detailed introduction to both commonly used and emerging ionization sources, including nanoparticle laser desorption/ionization (NPs-LDI), air flow-assisted ionization (AFAI), desorption ionization with through-hole alumina membrane (DIUTHAME), plasma-assisted laser desorption ionization (PALDI), and low-temperature plasma (LTP). In the MSI process, particular emphasis was placed on quantitative MSI (QMSI) and super-resolution algorithms.

View Article and Find Full Text PDF

Objective: To determine the impact of prolonged storage of donor lungs at 10°C of up to 24h on outcome after lung transplantation.

Background: An increasing body of evidence suggests 10°C as the optimal storage temperature for donor lungs. A recent study showed that cold ischemic times can be safely expanded to >12h when lungs are stored at 10°C.

View Article and Find Full Text PDF

Dark current density, a critical parameter in perovskite photodetectors (PPDs), largely depends on the quality of the perovskite film. Herein, we introduce a new small molecule in antisolvent strategy to enhance perovskite film quality during the crystallization of Cs(FAMA)Pb(IBr). COTIC-4Cl, an N-type narrow bandgap nonfullerene small molecule with specific functional group, could strongly bind to the uncoordinated Pb in the perovskite with assistance of antisolvent, enabling rapid supersaturation of perovskite solution and form dense structures under low-temperature annealing.

View Article and Find Full Text PDF

Objectives: This study aimed to compare the marginal adaptation of a cold ceramic (CC) sealer with the single-cone obturation technique with that of an AH-26 sealer with the lateral compaction technique in single-canal teeth.

Materials And Methods: In this in vitro experimental study, the root canals of 24 extracted single-rooted single-canal teeth were instrumented to F3 files by the crown-down technique and randomly assigned to 2 groups (n = 12). The root canals were obturated with a CC sealer and single-cone obturation technique with 4% gutta-percha in group 1 and with an AH-26 sealer and lateral compaction technique with 2% gutta-percha in group 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!