Recent Progress in High-voltage Aqueous Zinc-based Hybrid Redox Flow Batteries.

Chem Asian J

Department of Nanoenergy Engineering, Pusan National University, 50, Busandaehak-ro 63 beon-gil 2 Geumjeong-gu, Busan, 46241, Republic of Korea.

Published: January 2023

The energy density of redox flow batteries (RFBs) is generally affected by the standard electrode potential and the solubility of the redox active species. These crucial factors are closely related to the solvent in which the active materials are dissolved. Aqueous RFBs have been widely studied due to their excellent reaction kinetics and high solubility of the redox couple in aqueous media. However, the low voltage of conventional aqueous RFBs has hindered them from being candidates for practical applications. Recently, high-voltage aqueous RFBs are implemented based on the low negative potential of the Zn/[Zn(OH) ] reaction in an alkaline solution. Here, we review recent progress in the design of high energy density RFBs in both aqueous and non-aqueous electrolytes, notably focusing on the Zn/MnO hybrid RFBs in detail. Furthermore, strategies for inhibiting zinc dendritic growth and stabilizing manganese redox couple in the RFBs system are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.202201052DOI Listing

Publication Analysis

Top Keywords

aqueous rfbs
12
high-voltage aqueous
8
redox flow
8
flow batteries
8
energy density
8
solubility redox
8
redox couple
8
rfbs
7
aqueous
6
redox
5

Similar Publications

Direct Integration of Spent LiMnO with High Voltage Aqueous Zinc-Manganese Redox Flow Batteries as a Practical Upcycling Process.

Small

March 2025

Department of Nanoenergy Engineering, Pusan National University, 50, Busan daehak-ro 63 beon-gil 2, Busan, Geumjeong-gu, 46241, Republic of Korea.

With the explosive growth of lithium-ion batteries (LIBs), research on the recycling of spent batteries is widely conducted. However, conventional processes involve complex procedures, high costs, and environmental issues. This study introduces the electrochemical upcycling of spent LiMnO (LMO) cathode material, incorporating pre-filtration (PF) and pre-reduction (PR) processes to enable its direct application in redox flow batteries (RFBs).

View Article and Find Full Text PDF

Polymer-based aqueous redox flow batteries (RFBs) are attracting increasing attention as a promising next-generation energy storage technology due to their potential for low cost and environmental friendliness. The search for new redox-active organic compounds for incorporation into polymer materials is ongoing, with anolyte-type compounds in high demand. In response to this need, we have synthesized and tested a range of new water-soluble redox-active s-tetrazine derivatives, including both low molecular weight compounds and polymers with different architectures.

View Article and Find Full Text PDF

Advanced aqueous phenazine redox flow battery enhanced by selective interfacial water behavior on Co/NC modified electrode.

J Colloid Interface Sci

April 2025

Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China. Electronic address:

Although aqueous organic redox flow battery (RFBs) is a highly promising energy storage device, the redox reaction kinetics of the anode organic electrolyte material, especially for phenazine derivatives, are limited by low electrochemical activity of traditional porous carbon electrodes. Herein, Co/NC composite electrocatalyst was elaborated to significantly enhance the redox reaction kinetics of phenazine derivatives, in which Co/NC electrocatalyst could improve energy efficiency of aqueous phenazine RFBs by 43.2 % compared to pure carbon felt electrodes at current density of 100 mA/cm.

View Article and Find Full Text PDF

The multifunctional use of an aqueous battery for a high capacity jellyfish robot.

Sci Adv

November 2024

Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA.

The batteries that power untethered underwater vehicles (UUVs) serve a single purpose: to provide energy to electronics and motors; the more energy required, the bigger the robot must be to accommodate space for more energy storage. By choosing batteries composed primarily of liquid media [e.g.

View Article and Find Full Text PDF

Organic redox flow batteries in non-aqueous electrolyte solutions.

Chem Soc Rev

January 2025

Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.

Redox flow batteries (RFBs) are gaining significant attention due to the growing demand for sustainable energy storage solutions. In contrast to conventional aqueous vanadium RFBs, which have a restricted voltage range resulting from the use of water and vanadium, the utilization of redox-active organic molecules (ROMs) as active materials broadens the range of applicable liquid media to include non-aqueous electrolyte solutions. The extended voltage range of non-aqueous media, exceeding 2 V, facilitates the establishment of high-energy storage systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!